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Introduction 
 
A longstanding question in transportation economics is whether the 
revenues from efficient congestion tolls pay for the costs of 
transportation infrastructure. The question is of interest from both a 
positive standpoint (e.g., will a subsidy be required from other 
sources?) and a normative one (do users in aggregate pay their full 
costs?). 
 
The seminal result on cost recovery is a theorem due to Mohring and 
Harwitz (1962). For roads, which are the focus of this paper, the 
theorem states: 
 

(Classical cost-recovery theorem) Toll revenues just suffice to 
pay for a road of optimal capacity if three assumptions hold: (a) 
travel costs are homogeneous of degree zero in traffic volume and 
road capacity2; (b) capacity is perfectly divisible and (c) the cost of 
constructing a road is proportional to its capacity. 

 

Mohring and Harwitz derived the theorem for a deterministic 
environment. Yet uncertainty is often practically important for roads. 
Demand and capacity fluctuate unpredictably from day to day due to 
weather, accidents, unplanned road maintenance and so on. Lindsey 
(2009) shows that the theorem continues to hold in the face of this 
uncertainty if two additional assumptions are met: individuals learn 
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road conditions before deciding whether to travel, and the congestion 
toll is varied responsively to maintain efficient usage levels. 
 
The current paper is concerned not with short-run fluctuations in 
capacity and demand, but rather with uncertainty about facility costs 
and the long-run evolution of demand. The costs and time required to 
build, expand and rehabilitate a road are uncertain. Costs can rise 
because of changes in technical specifications, new construction 
methods, demands from municipalities for better network connections 
and so on (Nijkamp and Ubbels, 1999; Berechman, 2009). Major cost 
overruns and delays are common for toll roads. In a large 
international survey, Flyvbjerg et al. (2003) found an average cost 
escalation of 20.4% for road projects and 33.8% for bridges and 
tunnels. And in a study of un-tolled roads on Vancouver Island, Wu 
(2006) determined that 104 of 128 highway projects and 29 of 36 
bridge and tunnel projects experienced cost overruns.3 
 
Road operations and maintenance costs are also unpredictable. Input 
costs (labour, fuel and material) can vary significantly over time. 
Natural disasters cause damage. Climate change affects the frequency 
and severity of extreme weather, flooding, frost heave and so on. And 
fluctuations in traffic volumes affect the rate of wear and tear on 
roads. 
 
Traffic volumes are also a major source of uncertainty. In another 
large international survey, Flyvbjerg et al. (2006) found that for half 
of road projects actual traffic deviated from forecasted traffic by more 
than ±20%. Traffic volumes are affected by a host of unpredictable 
factors: project completion time, duration of the ramp-up period, 
economic growth rates, fuel prices, anticipated land-use 
developments that may fail to materialize, construction of competing 
or complementary roads, environmental concerns that curb 
automobile usage and so on. 
 
Despite improvements in data collection and econometric methods, 
forecasts have not become more accurate over time (Flyvbjerg et al., 
2006; Transportation Research Board, 2006). Optimistic demand 
projections tend to be the norm for toll road projects. Bain (2009) 



de Palma/Lindsey 3

identifies several reasons including lower-than-expected travel time 
savings, over-estimation of drivers’ values of time and corresponding 
willingness to pay tolls, and errors in designing complex tolling 
schemes in which tolls vary by vehicle type, section of  road and time 
of day. 
 
Technology is a third factor that can affect cost recovery from 
congestion tolls over the lifetime of a road. Traffic management 
system techniques such as ramp metering help to regulate demand. 
Incident Management Systems reduce the duration of traffic 
incidents. Advanced Traveler Information Systems notify motorists 
about traffic conditions. As these Intelligent Transportation Systems 
(ITS) technologies improve, and become more prevalent, congestion 
is likely to drop. Road vehicles are also becoming smaller, smarter 
and safer. Vehicle collision avoidance systems, lane-departure 
warning systems, driver fatigue monitoring systems, heads-up 
displays, and improved braking systems are reducing the probability 
of accidents that contribute to congestion. By increasing effective 
road capacity, and managing demand, all these technologies may 
result in lower congestion tolls and cost recovery.  
 
A final influence on capacity and cost recovery is flexible road 
capacity design. The capacity of existing roads can be increased or 
decreased by re-striping lanes, allowing vehicles to use shoulders 
during peak periods, changing speed limits, introducing or 
eliminating features to accommodate public transit and/or bicycles 
and so on. The appropriate date at which to make these adjustments 
depends on traffic volumes, ITS technology and vehicle designs, and 
is therefore unpredictable. 
 
The cost-recovery theorem with long-run uncertainty 
 
In an unpublished paper (de Palma and Lindsey, 2010) we have 
investigated whether the cost-recovery theorem extends to long-run 
uncertainty. Our analysis builds on Lindsey (2009) and a seminal 
study by Arnott and Kraus (1998) who showed that the theorem 
extends to non-stationary environments if there is no uncertainty. 
Arnott and Kraus consider a variety of model specifications. The 
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most general of the specifications for which the theorem extends (and 
which is reasonably descriptive of roads) is one in which a facility is 
built from scratch  and intermittently expanded as demand grows.4  
 
In de Palma and Lindsey (2010) we derive conditions under which 
the theorem holds in the Arnott and Kraus (1998) model when long-
run uncertainty about costs and demand is added. Due to space 
constraints, we omit the model and derivations, and just state the new 
theorem with changes and additions from the classical theorem 
identified in italics: 
 

(Extended cost-recovery theorem) Expected present-value 
lifetime toll revenues just suffice to pay expected construction costs 
for a road of optimal capacity if five assumptions hold: (a) travel 
costs are homogeneous of degree zero in traffic volume and road 
capacity at any calendar date and in any state; (b) design capacity 
is perfectly divisible, (c) the cost of constructing a road is 
proportional to its capacity, (d) realized capacity at any calendar 
date and in any state is proportional to design capacity, and (e) 
users have perfect information about the state, and tolls are set 
responsively to maintain efficient usage levels. 

 

Although the assumptions of the extended theorem are more stringent 
than for the classical theorem (as is to be expected) the extended 
theorem encompasses a wide range of circumstances. It allows for 
inflation in  construction costs and for changes in construction 
technology as long as constant returns to scale in construction 
continue to hold. It allows for increases or decreases in demand, 
changes in the discount rate and changes in the probability 
distribution of states (e.g., due to a decline in accident frequency). It 
allows for changes in travel costs due to advances in ITS technology, 
vehicle design and road design. Finally, the extended theorem 
encompasses the assumptions of the cost-recovery theorem in 
Lindsey (2009) so that cost recovery holds in expected values with 
short-run capacity and demand fluctuations as well as with long-run 
fluctuations. 
 
In short, the extended theorem is rather robust. However, it 
establishes only that expected present-value toll revenues cover 
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expected construction costs. The theorem says nothing about the 
degree to which costs will actually be recovered once uncertainty has 
been realized. Both surpluses and deficits are possible, and the 
experience with road projects reviewed in the introduction suggests 
that large departures from cost recovery may be common even if 
construction costs and demand are forecast without bias. The purpose 
of the next section, and the main contribution of this paper, is to 
examine the plausible extent of surpluses and deficits and to identify 
which parameters affect cost recovery the most. 
 
Departures from expected cost recovery 
 
Departures from cost recovery can occur for two main reasons. One is 
that construction costs and other parameters can be estimated 
incorrectly so that roads are built too large or too small. The other is 
that construction costs and traffic demand are inherently 
unpredictable so that even an optimally designed road will typically 
not recover its costs exactly. We consider these two reasons in turn, 
with emphasis on the first reason. 
 

Bad parameter estimation 
 

The implications for cost recovery of bad construction cost estimates 
warrant only brief discussion. The survey by Flyvbjerg et al. (2003) 
found that actual costs exceeded forecast costs by an average of 
20.4% for roads and 33.8% for bridges and tunnels. These figures 
might suggest that expected cost recovery will run at 1/1.204= 0.831 
for roads, and 1/1.338 =0.747 for bridges and tunnels. However, this 
disregards the possibility that costs were deliberately underestimated 
(possibly by contractors or political supporters of the projects) in the 
hope of getting them approved. It also neglects that operations, 
maintenance and rehabilitation contribute to lifetime project costs. 
Thus, construction cost overruns alone are unlikely to drive average 
cost recovery below about 75%. 
 
The effects of errors in other parameters are not as transparent, and to 
examine them we use a model. For simplicity and clarity, attention is 
focused on initial construction of a road and operation until the first 
capacity addition which is assumed to occur at a fixed date, T.5 The 
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interest rate, r, is assumed to be constant over time. Consistent with 
assumption (c) of the extended theorem, the cost of building a road 
with design capacity ŝ  is assumed to be ŝ  where   is a constant. 

Operations and maintenance costs are ignored, and capacity is 
assumed not to depreciate.6 
 
Demand at time t in state w is given by a constant-price-elasticity 
function tw tw twN n p   where twn  is demand "intensity", twp  is the 

full price or generalized cost of a trip, and 0   is the price 

elasticity. The full price is the sum of the user-borne travel cost and 
the toll, tw . User cost is given by the widely-used Bureau of Public 

Roads formula    ,tw tw t tw twC N s d N s
  where tws  is the capacity 

realized at time t in state w.7 To allow for advances in ITS 
technology, vehicle design and road design, coefficient td  is assumed 

to decline slowly along an exponential path 0
t

td d e   where 

parameter   describes the rate of technological progress.8  

 
For simplicity, capacity is assumed to be fully available at all times in 
all states.9 Demand intensity evolves according to Geometric 
Brownian Motion, following the stochastic differential equation 

t t t tdn gn dt n dW   where g is the mean growth rate or "drift" 

parameter,   is the standard deviation, and tW  is a Wiener process.10 

 
Let 0n  denote demand intensity at time 0 when the road is built. 

Optimal design capacity works out to 

(1)       
1

1 1
1

0 0ˆ 1 1 /hTs n d e h
   




 
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where     21 / 2h g r           and 

   1 / 1     .  Expected cumulative usage, U, can be written 

as a function of ŝ : 

(2)         
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where       22/ 1 / 2 1m g         . Equation (1) 

reveals that design capacity is proportional to initial demand 
intensity. This follows from the assumption that road capacity can be 
built at a constant unit cost, and a property of Geometric Brownian 
Motion that demand at all future dates is proportional to initial 
demand. From eqn. (2) the elasticity of expected cumulative usage 
with respect to design capacity is    ˆ / 1 0,1U

s     . Building 

a larger road results in greater usage because congestion is reduced. 
However, usage increases less than proportionally to the increase in 
capacity except in the limiting case where demand is perfectly elastic 
(i.e.,   ). Expected present-value toll revenues, R, can be written 

as a function of design capacity 

(3)         
1

11
0 0 ˆ1 1 / .hTE R n d s e h


    


      

The elasticity of   E R  with respect to design capacity is 

 ˆ 1R
s     . Toll revenue increases or decreases depending on 

whether demand is elastic or inelastic (i.e., 1   or 1  ). The 

elasticity of cost recovery,  , with respect to design capacity is 

   ˆ ˆ 1 1 / 1 0R
s s
          . Building a larger road reduces 

cost recovery because the cost of the larger road is not recovered by 
greater toll revenue.11 Finally, by substituting eqn. (1) for ŝ  into eqn. 
(3), it is straightforward to show that expected present-value revenues 
equal capacity costs:   ˆE R s . 

 
To gain further insights it is necessary to proceed numerically. We 
parameterize the model for a three-lane road with a design capacity of 
ˆ 6,000s  . Daily usage in year 0 is assumed to be 0 12,000N   so 

that the peak period lasts for two hours. The generalized cost (net of 
free-flow cost) in year 0 is 0 $7.50p  , and the initial toll is 

0 $5.00  . Parameter values that support this equilibrium are 2  , 

0.25  , 0d =0.625, 0n = 19,858 and  =131.93. The time interval 

before the first capacity addition is set to 15T  , and the discount 
rate is set at 0.05r  . 
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It is difficult to judge a reasonable value for parameter  . There is 

also little published information on which to base values of g and  . 
Appropriate values will vary by country, rate of national and regional 
economic growth, rate of growth in automobile ownership, and other 
factors. Suitable parameterization will therefore vary from case to 
case. For exploratory purposes here we will set the rate of 
technological progress to 0.01  , the mean annual growth rate of 

demand to 0.02g  , and the standard deviation of the growth rate to 

0.05  . Alternative values of  , g and  are considered in the 

sensitivity analysis below. 
 
With these base-case parameters, mean traffic volume over the 15-
year time horizon is  E U = 74.6 million. Cumulative expected toll 

revenues are $288.9 million which match construction costs as per 
the extended theorem.12 
 
To assess how design capacity and expected cost recovery depend on 
parameter estimates, we now alter the parameter values one at a time 
while assuming that the true parameter values remain equal to the 
base-case values. To do this we use eqn. (1) to compute design 
capacity using the modified parameter values, and then use eqn. (2) 
and eqn. (3) to compute expected cumulative usage and toll revenues 
using the true parameter values. Given 2   and 0.25  , the 

elasticity formulas given above yield ˆ
U
s =1/3 and ŝ

 = -2. Cost 

recovery is therefore much more sensitive to design capacity than is 
cumulative usage. 
 
The results of the sensitivity analysis are reported in Table 1. Each 
quantity is stated as a multiple of the value that would obtain with 
correctly specified parameters. The first two rows show the effects of 
misestimating unit construction costs. Estimated values are marked 
with a ~ (tilde) to distinguish them from the true values. Thus, 

 5 / 6   indicates that the unit cost is underestimated by one 

sixth. 
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Table 1: Sensitivity to parameter errors 
 

Misspecified 
parameter 

Design 
capacity 

Expected 
cumulative 

usage 

Expected cost 
recovery rate 

(1) Unit construction cost 

 5 / 6   1.095 1.031 0.833 

 7 / 6   0.926 0.975 1.167 

(2) Initial demand 

 0 02 / 3n n  0.667 0.874 2.25 

 0 04 / 3n n  1.333 1.101 0.562 

(3) Mean growth rate in demand  (true value: 0.02g  )  

0g   0.873 0.956 1.313 
0.01g   0.933 0.977 1.150 
0.03g   1.076 1.025 0.863 
0.04g   1.163 1.052 0.739 

(4) Standard deviation of demand growth  (true value: 0.05  ) 
0   0.991 0.997 1.018 
0.1   1.027 1.009 0.947 

(5) Demand elasticity  (true value: 0.25  ) 

0.125   1.017 1.006 0.966 

0.375   0.984 0.995 1.032 
(6) Rate of technological progress  (true value: 0.01  ) 

0   1.037 1.012 0.930 

0.02   0.965 0.988 1.073 

 
The first row of Table 1 shows that if construction costs are 
underestimated by 1/6 (about 17%) the road is overbuilt by 9.5%. 
Expected usage increases, but only by a little over 3%.13 The largest 
effect is on cost recovery which changes in proportion to  . 

Overestimating construction costs by 1/6 has a similar but opposite 
effect on capacity, cumulative usage and cost recovery. 
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Row (2) of Table 1 shows that errors in estimating initial demand 
have a pronounced effect on expected cost recovery. If demand is 
underestimated by 1/3 (which is not uncommon in practice) the road 
is built to 2/3 of its optimal capacity. Construction costs are reduced 
commensurately. The toll, meanwhile, rises considerably because of 
the nonlinear dependence of congestion delay on capacity. The end 
result is that over the 15-year period the road generates an expected 
revenue surplus equal to 125% of its cost. By contrast, if demand is 
overestimated by 1/3 (also not unrealistic), expected toll revenues 
cover little more than half construction costs. 
 
Row (3) assesses the effects of the mean growth rate in demand. As 
expected, underestimation of growth results in a smaller road 
capacity, lower cumulative usage and higher expected cost recovery. 
If growth is disregarded, the road recovers on average nearly one 
third more than its costs. By contrast, if growth is overestimated by 2 
percentage points, expected cost recovery falls 26% below costs.  
 
Row (4) of Table 1 shows that misestimating variability in the growth 
of demand has little effect on design capacity, cumulative usage or 
cost recovery. Similarly, row (5) shows that varying the demand 
elasticity up or down by 50% has only small effects. The rate of 
technological progress does not have a major influence either (cf. 
Row (6)). Misestimating the rate of progress by ± 1 percentage point 
has about the same effect as misestimating the mean growth rate of 
demand by about ±0.5 percentage points in the opposite direction. 
 
Probability distribution of revenues and cost recovery 
 
The analysis to this point has focused on deviations from expected 
cost recovery due to errors in estimating model parameters that 
determine construction costs, congestion or demand. We now turn 
briefly to the second question of how much actual (i.e., realized) 
revenues and cost recovery for an optimally designed road can differ 
from their expected values due to the inherent variability of demand. 
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One simple way to address this question is to consider the probability 
distribution of revenues at a given point in time. Doing so gives only 
a partial view of how much cumulative revenue is generated over a 
road's full lifetime. However, it has the advantage that closed-form 
analytical solutions exist. Table 2 presents summary statistics given 
the base-case parameter values for aggregates of interest in year 10 
(i.e., two thirds of the way through the 15-year time horizon).  
 
Uncertainty in the model is driven by stochastic growth in the 
intensity of demand, n.  By year 10, expected intensity has increased 

to 0
gtn e = (19,858)  0.02 10e =  24,255. The coefficient of variation (CV) 

of demand intensity at t=10 is about 0.16. The CV for usage is 
smaller because congestion has a dampening effect on usage. The CV 
for the toll is larger because usage has a nonlinear effect on 
congestion delay, and usage and delay vary in tandem. Revenue has 
the largest CV of all because it is the product of usage and the toll 
which also vary in tandem. Expected daily revenues in year 10 are 
$83,005. This is some 38% higher than the revenues of $60,000 
generated just after the road is built. Nevertheless, because of the 
large variability in demand there is a 0.19 probability that actual 
revenues in year 10 are below their starting level. 
 

Table 2: Variability in daily traffic, toll and toll revenue in  year 10 
 

Variable Mean 
Standard 
deviation 

Coefficient of 
variation 

Demand 
intensity 

24,255 3,859 0.159 

Traffic 14,129 1,489 0.105 
Toll level $5.75 $1.23 0.213 
Toll revenue $83,005 $26,841 0.323 

 
To derive the probability distribution of cumulative revenues over the 
full time horizon it is necessary to use numerical methods. This was 
done by solving the stochastic differential equation for n using small 
(monthly) time increments over the 15-year horizon, and taking a 
random draw for the Wiener increment, tdW , at each monthly step. 
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The process was repeated 2,500 times to generate a reasonably 
smooth probability density function.  
 
The probability distribution function so generated is shown in Figure 
1. The coefficient of variation of the distribution is 0.226. This is 
somewhat smaller than the CV for revenues in year 10 alone, but still 
appreciable. 

 
Conclusions 
 
In a companion paper (de Palma and Lindsey, 2010) we have shown 
that expected present-value congestion tolls for an optimally designed 
road pay for its construction under various types of uncertainty. This 
paper has focused on the size of potential surpluses or deficits that 
can arise either from errors in estimating key parameters or from the 
inherent variability of demand. Using a parametric model we 
determined that cost recovery is quite sensitive to estimated initial 
demand, and moderately sensitive to the estimated mean growth rate 
of demand. The rate of technological progress does not appear to 
have  as strong an effect. Even with no errors the natural variability in 
demand can result in substantial surpluses or deficits over the lifetime 
of a road. Further research is clearly warranted using more detailed 
and accurate information on the causes and magnitudes of the various 
uncertainties.  
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Figure 1: Probability density function for cumulative present-value 
revenues (base-case parameter values) 
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Endnotes 
                                                           
1 Financial support from the Social Sciences and Humanities Research Council of 
Canada is gratefully acknowledged. This paper has been updated from the version 
published in the conference proceedings to correct errors in equations (1)-(3) and some 
of the numerical results reported in Table 1. 
2 With homogeneity of degree zero the cost of a trip is unaffected if volume and 
capacity change by equal proportions. 
3 As reported by Berechman and Chen (2011). 
4 See Section 4.4 of Arnott and Kraus (1998). 
5 These assumptions are consistent with the extended theorem. 
6 To account for the fact that initial capacity remains useful after time T the unit cost of 

capacity can be deflated to  1 rTe     . 
7 The constant term in the BPR formula is omitted to facilitate analytical solutions. The 
user cost function therefore specifies the variable or congestion-dependent component 
of travel cost while omitting the free-flow component. 
8 Parameter   is included in the exponent of the expression so that td  can be 

interpreted as a multiplicative capacity expansion factor. 
9 As noted above, the extended theorem generalizes the cost-recovery theorem in 
Lindsey (2009) so that introducing short-run capacity (or demand) fluctuations would 
not affect the results. 
10 Geometric Brownian Motion is frequently assumed in the options and option value 
literature (Dixit and Pindyck, 1994) as well as in some transportation infrastructure 
studies (e.g., Rose, 1998; Saphores and Boarnet, 2006). Marathe and Ryan (2005) find 
empirical support for Geometric Brownian Motion in the case of usage of two 
established services (electric power consumption and airline passenger enplanements), 
but not for two emergent services (cellphones and the Internet). 
11 In the limit as demand becomes perfectly elastic (  ) , ŝ

  converges to zero. In 

this limiting case, cost recovery is independent of capacity because demand increases 
proportionally with capacity, and the toll then does not change. 
12 Total construction costs are 365  s=365*131.93*6,000=288.9 million. 
13 The relative magnitudes of these changes is approximated by the point elasticity 

ˆ
U
s =1/3. 


