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Introduction 

 

Economists have long advocated congestion pricing as the best way to tackle traffic congestion. Yet 

congestion pricing is still fairly rare, and various second-best policies for congestion relief continue to 

gain attention. A leading candidate is to subsidize transit fares in order to attract people out of their cars. 

Subsidization is politically popular but it has several limitations. First, reducing fares below marginal 

social cost creates a deadweight loss from induced trips and it contributes to crowding which is a serious 

problem in many cities
2
. Second, if transit is a poor substitute for driving large fare reductions are needed 

to make a dent in traffic congestion. Third, if the own-price elasticity of car trips is large then any 

potential benefits from congestion relief will be largely offset by latent demand (Duranton and Turner, 

2011). Finally, lowering fares exacerbates transit deficits.  

 

Cities vary widely in their fare policies. Many levy fares that are constant throughout the day. Others have 

adopted some degree of time variation — either as peak-period surcharges (e.g., London and Washington, 

D.C.) or off-peak discounts (e.g., Singapore and Melbourne). The main goal of this paper is to analyze 

optimal fare policies when traffic congestion and transit crowding are both present. We use a dynamic 

model that accounts for trip-timing decisions and the evolution of transit crowding and traffic congestion 

over the course of a peak travel period. The focus is on how transit fares should be set to simultaneously 

address traffic congestion and transit crowding externalities, and how the level and time structure of fares 

affect overall efficiency of the two-mode system.  

 

Literature Review 

 

There are many studies of second-best transit pricing in the presence of traffic congestion.
3
 One of the 

first is Glaister (1974) who used a model featuring cars and buses, peak and off-peak time periods, and 

parametric cross-price demand elasticities between each of the four mode-time period choices. Glaister 

showed that peak and off-peak fares should both be set below marginal social cost. The peak fare may be 

below the off-peak fare, and either fare can be zero or even negative. Glaister and Lewis (1978) extended 

Glaister's (1974) model to include a rail mode and congestion interaction between cars and buses. They 

explored the potential benefits from second-best transit pricing in the Greater London area. Proost and 

Van Dender (2008) conducted a similar analysis for London and Brussels using a more elaborate model. 

These and other studies reveal the role of own-price and cross-price demand elasticities in governing 

optimal fare policy. Nevertheless, their approach is limited by the use of discrete peak and off-peak time 

periods and parametric elasticities, and neglect of transit crowding. 

 

Tabuchi (1993) advanced the treatment of time by using the bottleneck model to describe travelers' trip-

timing decisions and the evolution of traffic congestion on the road. However, he assumed that transit 

service is provided by a rail system with sufficient capacity to deliver all passengers to the destination on 

time and without crowding. His model therefore features only a single fare, and cannot be used to study 
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time-of-day fare variations. Huang (2000) built on Tabuchi (1993) by adding crowding costs, but retained 

the assumption that transit delivers users on time. Huang et al. (2007) relaxed this assumption by 

supposing that rail service is provided on multiple trains according to a timetable. However, they did not 

analyze optimal pricing for either mode. Kraus (2012) uses a similar model to examine how transit usage 

depends on the pricing of roads. He ignores crowding costs and assumes that train fares are set according 

to first-best pricing principles. de Palma, Kilani and Proost (2015) and de Palma, Lindsey and 

Monchambert (2015) do allow for crowding, but assume that transit is the only travel mode so that first-

best transit pricing is de facto optimal. 

 

 

The Model 

 

The model incorporates components of the models in Huang (2000), Huang et al. (2007) and de Palma, 

Lindsey and Monchambert (2015). One origin is connected to one destination by a road and a train 

service with a separate right of way. Utility from travel is described by a quasi-linear utility function 

 ,R AU N N g  , where 
AN  is the number  of car (automobile) trips, 

RN  is the number of rail trips, and g 

is a composite numeraire consumption good. Function  U   is strictly quasiconcave so that car trips and 

rail trips are imperfect substitutes. 

 

As in the Vickrey (1969) model, trip-timing preferences are described by a piecewise linear schedule 

delay cost function. A traveler departing at time t and arriving at time 
at  incurs a combined travel time 

and schedule delay cost of 

     * *

a a at t t t t t  
 

     , 

where *t  is desired arrival time at the destination,   is the unit cost of time spent traveling,   is the unit 

cost of arriving early, and   is the unit cost of arriving late. 

 

Congestion on the road takes the form of queuing behind a bottleneck. The cost of a car trip departing at t 

and arriving at at  is: 

           * *

0A AC t C q t t t q t t q t t t   
 

         , 

where 0AC  is the free-flow cost of a car trip,  q t  is queuing delay and  t  is the road toll (if any) at 

time t. 

 

To simplify analysis, travel time by train is normalized to zero so that at t . Train service is assumed to 

be provided continuously and at a constant capacity rate over a fixed time interval  0 , et t  where 

*

0 et t t  . The cost of a train trip at t is: 

         * *

0R RC t C n t t t t t t   
 

       , 

where 0RC  is the fixed cost of a train trip (e.g., the time cost of access and egress time),  n t  is the 

number of users taking the train at time t,   is a parameter measuring disutility from crowding, and  t  

is the fare at time t. 

 

Users have heterogeneous preferences.
4
 There are two user groups

5
, 1 and 2, that differ with respect to 

parameters  ,  ,   and  , but have the same values of /   and *t . Parameter values satisfy four 

conditions. First, 1 2   so that group 2 has stronger on-time preferences than group 1. Second, 
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1 1 2 2/ /    . This implies that group 2 tolerates queuing more than group 1. Group 2 arrives by car 

closer to *t  than group 1, and creates a higher marginal external congestion cost when queuing occurs. 

Third, 
1 1 2 2/ /    . This implies that group 2 tolerates crowding more than group 1, and arrives by 

train closer to *t  than group 1. Finally, 
1 1 2 2/ /     so that the two groups value late arrival relative to 

early arrival by the same ratio. Train loads are determined by the numbers of users in each group.  

 

Results 

 

Preliminary results have been derived for the regimes shown in Table 1: 

 

Table 1: Administrative and pricing regimes 

 

Fare policy Road toll Transit fare 

First-best optimum 

First-best Optimal time-varying Time-varying 

Second-best None Time-varying 

Third-best None Time-varying 

Flat fare None Flat 

Free transit None None 

 

The first-best optimum and free transit regimes serve as benchmarks against which the efficiency of the 

other regimes is measured. In the first-best, second-best and third-best pricing regimes, the fare can be 

varied freely over time but it is anonymous in the sense that it cannot depend on whether a user belongs to 

group 1 or group 2. In the first-best pricing regime the road is priced optimally to eliminate queuing at the 

bottleneck and the fare schedule is chosen to optimize welfare. In the second-best pricing regime the road 

is not tolled and the transit operator takes traffic congestion into account when setting the fare schedule. 

By contrast, in the third-best pricing regime the operator behaves myopically and neglects traffic 

congestion. Finally, in the flat-are regime the fare is restricted to be the same for all trains but the level of 

the common fare can be optimized.  

 

Several general properties of the regimes have been established. 

 

First-best optimum:  In the first-best optimum, for each group the numbers of trips taken by each mode 

are chosen to equalize their marginal social costs. Passenger loads are also distributed across trains to 

equalize the marginal social costs of each trip by members of the same group. Trains arriving closer to *t  

carry higher loads. 

 

First-best pricing: In this regime the road is optimally tolled and the fare can be varied freely over time. 

Nevertheless, the first-best optimum still cannot be achieved unless 2 1  . To see why, consider an 

early arrival period and suppose group 1 travels during the interval 0
ˆ,t t    and group 2 during the interval 

*ˆ,t t   . If 2 1  , train loads must decrease at t̂  in order to provide less crowded conditions for group 2, 

but users in group 1 can then reduce their trip costs by deviating from the optimum and taking a train just 
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after t̂ . Conversely, if 
2 1   train loads must increase at t̂  but group 2 users can then reduce their costs 

by taking a train just before t̂ . Rescheduling trips this way can be deterred by introducing a suitable 

upward or downward jump in the fare at t̂ , but doing so upsets optimality conditions for numbers of trips 

and modal splits.
6
  

 

Second-best pricing:  When the road is not tolled, second-best pricing calls for a transit subsidy. The size 

of the subsidy for each group depends on the traffic congestion externality it creates, its own-price 

demand elasticity, and the cross-price elasticity between modes. Because group 2 creates a larger traffic 

congestion externality than group 1, the subsidy is higher — ceteris paribus — for group 2. Since group 2 

travels on peak-period trains this requires lowering peak-period fares more than off-peak fares. However, 

this policy is constrained by trip rescheduling incentives as with the first-best pricing regime. 

 

Third-best pricing:  Third-best pricing entails setting fares as if first-best conditions apply. Fares are thus 

set as in the first-best pricing regime, and too many car trips are made. 

 

Flat fare:  In the flat-fare regime it is impossible to price discriminate either between trains or between 

groups. The level of the fare is chosen to balance the costs of traffic congestion (which calls for a low 

fare) and the costs of excessive transit trips (which calls for a high fare). More precisely, the fare level is 

set to balance overpricing off-peak trips and trips by group 1, and underpricing peak-period trips and trips 

by group 2. 

 

Although the model is fairly simple, the presence of user heterogeneity complicates the analytics and 

precludes analytical solutions. Numerical analysis reveals that, when car trips and transit trips are good 

substitutes, third-best pricing can be much less efficient than second-best pricing and it can also perform 

less well than an optimal flat fare. Differences between the regimes narrow using more realistic 

assumptions about the degree of substitutability between modes.  

 

A Numerical Example 

 

In this section we present a numerical example that is calibrated to yield results broadly consistent with 

empirical evidence. Aggregate travel demand by each group is described by a representative individual 

with a linear-quadratic utility function:      
2

,Ri Ai i Ri Ai i Ri Ai i Ri AiU N N a N N b N N d N N     , where 

ia , ib  and id are positive parameters, and i id b , 1,2i  . 

 

The i  and i  parameters affect the equilibrium only through the composite parameter 

 /i i i i i       and numerical values are assigned directly to this composite. Parameter values 

for the various components of the model are given in Table 2. Group 2 differs from group 1 in having a 

higher choke price on trips (i.e., 
2 1a a ), and stronger on-time preferences (i.e., 

2 1  ). Other 

preference parameters are assumed to be the same for the two groups. 
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Table 2: Base-case parameter values 

 

 1a   $60/trip  1 2R Rc c   $8/trip 

 2a   $75/trip  1 2A Ac c   $5/trip 

 1 2b b   $0.02/trip
2 

 1 2    $0.0005/passenger 

 1 2d d   $0.0667/trip
2 

 
*t   immaterial 

 1 2    $20/h   g  immaterial 

 1   $8/h   s  5000 vehicles/h 

 2   $16/h  Service interval  0 , et t   1 h 

 

 

Results are shown in Table 3. 

 

Table 3: Equilibria 

 
 Regimes in order of increasing efficiency 

 Free transit (n) Flat fare (f) Third-best (3) Second-best (2) First-best  (o) 

1RN  1,690 1,691 1,603 1,693 1,603 

1AN  1,858 1,858 1,882 1,857 1,882 

2RN  2,233 2,234 2,106 2,195 2,106 

2AN  2,247 2,247 2,282 2,259 2,282 

1 2R RN N  3,923 3,925 3,709 3,887 3,709 

1 2A AN N  4,106 4,105 4,165 4,115 4,165 

Fixed toll for 

group 1 $0 -$0.014 $0 -$1.82 $0 

Fixed toll for 

group 2 $0 -$0.014 $0 -$1.73 $0 

t̂  0.808 0.808 0.715 0.704 0.715 

Full price elasticities (group 1, group 2) 

Auto, Auto -0.350,  -0.380 -0.350,  -0.380 -0.349,  -0.377 -0.351,  -0.379 -0.349,  -0.377 

Rail, Rail -0.460,  -0.387 -0.459,  -0.386 -0.540,  -0.472 -0.458,  -0.411 -0.540,  -0.472 

Auto, Rail 0.139,   0.128 0.139,   0.128 0.153,   0.145 0.139,   0.133 0.153,   0.145 

Rail, Auto 0.128,   0.127 0.128,   0.127 0.136,   0.136 0.128,   0.130 0.136,   0.136 

Welfare components 

Total costs $113,205 $113,221 $107,982 $109,865 $89,940 

1CS  $84,023 $84,047 $81,261 $84,071 $81,261 

2CS  $133,844 $133,875 $128,480 $132,216 $128,480 

Fare revenue $0 -$55 $10,795 $4,502 $2,408 

Toll revenue $0 $0 $0 $0 $18,042 

Surplus $217,867 $217,867 $220,537 $220,814 $238,579 

Rel. efficiency 
ir  

0 0 0.129 0.141 1 
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iCS  denotes the aggregate consumers' surplus of group i. The relative efficiencies of the regimes are 

compared using the index    /i i n O nr W W W W    where W is social surplus or welfare, i indexes the 

regime, n denotes the free-fare regime and o denotes the first-best optimum.  

 

Free transit: In the free-transit regime there is no fare and no toll so that transit crowding and queuing 

congestion both impose external costs. About 4,000 trips are made by each mode. Group 2 takes more rail 

trips than group 1, but group 2 restricts its trips to the 20 percent of trains that arrive closest to on-time. 

The own-price elasticity of demand for automobile trips is a little over one third: in line with estimates for 

short-run elasticities. The own-price elasticity of demand for transit trips is a little higher. A rule of thumb 

is that the elasticity is about one third. However, long-run elasticities can be considerably larger 

(Schmiek, 2016). Similar elasticities obtain in the other four regimes. Thus, the elasticities can be 

interpreted as applicable over an intermediate time interval of perhaps 1-2 years. Cross-price elasticities 

are about one third the magnitude of the own-price elasticities — reflecting the fact that automobile and 

rail trips are rather imperfect substitutes. 

 

First-best optimum: At the opposite extreme to free transit is the first-best optimum in which optimal 

numbers of trips are chosen or each group by each mode. Because 
2 1  , the first-best optimum can be 

supported by first-best anonymous (i.e., no discriminatory) pricing. Since queuing congestion is more 

severe than transit crowding in the free-transit regime, the first-best optimum entails somewhat fewer rail 

trips by each group and more automobile trips. Both groups end up worse off as apparent from the decline 

in their consumers' surplus, but the losses are outweighed by transit revenue and substantial toll revenue. 

The overall gain amounts to $12,325 or about $3 per trip. 

 

Flat fare: The optimal flat fare turns out to almost zero ($0.014) and yields no perceptible welfare gain. 

The reason for this is that the benefits from setting a negative fare to alleviate queuing congestion almost 

exactly balance the benefits from setting a positive fare to reduce excessive rail trips. Both externalities 

are higher or group 2, but with a flat fare it is not possible to discriminate between the two groups using 

the pricing mechanism. 

 

Third-best fare: In the third-best fare regime the fare is varied over time to fully internalize rail crowding 

costs without considering congestion on the road. The fare structure is therefore the same as for the first-

best optimum and no flat-fare component is added to or subtracted from the schedule. Consequently, the 

numbers of trips by each group using each mode, price elasticities of demand and consumers' surplus are 

identical to those in the first-best optimum. 

 

Second-best fare: In the second-best fare regime the fare is varied over time as in the third-best regime but 

the fare level is decreased to reduce automobile travel. Because group 2 creates a larger negative traffic 

congestion externality than group 1, the optimal downward shift is larger for group 2 than group 1. 

However, trip rescheduling incentives prevent the unrestricted second-best fare from being implemented 

and the overall welfare gain compared to the third-best pricing is very limited. moreover, the second-best 

fare only yields about one-seventh of the welfare gain achieved from first-best pricing. The reason for this 

is that (given the parameter values chosen for the example) traffic congestion is more costly than transit 

crowding and can only be alleviated directly by levying a time-varying toll. 
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Conclusions and Directions for Future Research 

 

In this paper we have taken a simple, first-cut analysis at studying the optimal level and time 

structure of transit fares when transit crowding and traffic congestion are both significant 

externalities. Extensive sensitivity analysis will be required to determine the degree to which 

transit fare discounts can be used to reduce peak-period automobile trips that create the most 

congestion without overloading the transit system and exacerbating crowding. 
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efficiently priced (or not an option). 
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