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Introduction 

Population is steadily increasing worldwide. Consequently the 

demand for mobility is increasing, traffic congestion is deteriorating, 

and undesirable changes in the environment are becoming major 

concerns. Infrastructure improvement have been has been the 

primarily method to cope with congestion throughout the recent 

decades. However, tight constraints on financial resources and 

physical space, as well as environmental considerations, have 

accentuated the consideration of a wider range of options. Therefore, 

the emphasis has shifted to improving the existing infrastructure by 

optimizing the utilization of the available capacity. Advancements in 

Intelligent Transportation Systems (ITS) have the potential to 

significantly alleviate traffic congestion and long queues at the 

intersections through innovative traffic signal control strategies.  

Pre-timed and actuated traffic signal control systems are the most 

common control systems for isolated intersections. Pre-timed signal 

control does not adapt to fluctuations in traffic flows. Actuated signal 

control partially reacts to changes in the demand patterns by green 

extension to the direction being served. In congested grid-like 

networks, actuated control might result in very long queues on other 

movements (Zhang et al., 2005).  

Adaptive traffic signal control on the other hand adjusts signal timing 

parameters in response to real-time traffic flow fluctuations.  

therefore, has a great potential to outperform both pre-timed and 

actuated control (McShane et al., 1998).  Several methods of adaptive 

signal control have been reported in the literature. Reinforcement 

Learning (RL) has shown great potential for self-learning traffic 

signal control method, the main advantage of which is the ability to 

perpetually learn and improve service over time (Abdulhai and 

Kattan, 2003).  
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The paper starts with a brief background on methods used to solve the 

adaptive traffic signal control problems. Then a generic RL-based 

platform is proposed and tested on a real-world multi-phase 

intersection in downtown Toronto. The results of the testbed 

intersection are then presented and compared to the common pre-

timed control strategy as a bench mark. The paper ends with 

conclusion and directions for future research.  

Background 

Due to the stochastic nature of the traffic system, a closed-loop 

control strategy that is adaptive to the most recent traffic conditions is 

paramount. Dynamic Programming (DP) is viewed as plausible 

approach to tackle the stochastic control problem (Gosavi, 2003). A 

significant portion of the adaptive signal control systems that have 

been proposed are based on dynamic programming, for instance, 

PRODYN (Farges et al., 1983), OPAC (Gartner, 1983), RHODES 

(Head et al., 1992). However, DP-based traffic signal control systems 

suffer from two major limitations; first, DP methods require a state 

transition probability model for the traffic environment which is 

difficult to obtain because of the stochastic nature of the traffic 

arrivals at the intersections; second, the number of states that 

represent various traffic conditions is typically massive. Therefore, 

DP algorithms are computationally intractable (Sutton and Barto, 

1998; Gosavi, 2003). 

Reinforcement Learning (RL), an Artificial Intelligence (AI) 

technique, overcomes the DP limitations; since RL is capable of 

solving/modelling the stochastic control problem without assuming a 

perfect model of the environment and with less computational effort 

(Sutton and Barto, 1998). In RL, a control agent interacts with the 

environment to learn and achieve the optimal mapping between the 

environment’s state and the corresponding optimal control action, 

offering a closed loop optimal control law This mapping from states 

to actions is also referred to as policy. The agent iteratively receives a 

feedback reward for the actions taken and adjusts the control policy 

until it converges to the optimal control policy. Since the RL control 

agent would learn from its own experience and adapt itself to the 

environment, it appears to offer promising results in traffic 

environment for adaptive signal control where optimal real-time 
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adaptive control is a key element in improving the effectiveness and 

efficiency (Abdulhai and Kattan, 2003). 

Abdulhai et al. (Abdulhai et al., 2003) and Thrope (Thorpe, 1997) 

introduced the Q-Learning and SARSA, respectively, for isolated 

adaptive traffic signal control. In Bingham, (2001), a neuro-fuzzy 

traffic signal controller is used in which RL is used for learning the 

neural network. Oliveira et al. (De Oliveira et al., 2006) proposed an 

RL-based method that learns in non-stationary scenarios using an 

approach that can detect context changes in the traffic network. In 

most of these studies, the algorithms are implemented on hypothetical 

simplified two-phase intersections.  Also, to authors’ best knowledge, 

all the previous studies that used RL for isolated traffic control 

(Thorpe, 1997; Bingham, 2001; Abdulhai et al., 2003; De Oliveira et 

al., 2006; Lu et al., 2008) are  designed to solve fixed phasing 

sequence intersections. Considering fixed phasing sequence signals 

can significantly reduce the dimension of action space and 

consequently shorten the computation time of the RL algorithm. 

However, these systems lack the flexibility to fully adapt to traffic 

flow fluctuations due to the phase sequence constraint.   

To address these limitations, the proposed RL controller is designed 

to account for variable phasing sequence in which the control action 

is no longer an extension or a termination of the current phase as in 

the fixed phasing sequence approach. Instead, the algorithm extends 

the current phase or switches to any other phase according to the 

fluctuations in traffic, possibly skipping unnecessary phases. 

Therefore, this algorithm is envisioned as an acyclic timing scheme 

with variable phasing sequence in which not only the cycle length is 

variable but also the phasing sequence is not predetermined.  Also, 

the proposed algorithm is tested on a simulation of real-world multi-

phase intersection in downtown Toronto. 

Q-Learning for Acyclic Adaptive Traffic Signal Control with 

Variable Phasing Sequence 

Q-Learning is one of the most commonly used RL algorithms in the 

traffic control problem (Wiering, 2000; Abdulhai et al., 2003; Zhang 

and Xu, 2005; Jacob and Abdulhai, 2006; Lu et al., 2008; Wen et al., 

2009). The Q-Learning agent learns the optimal mapping between the 
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environment’s (e.g., transportation network) state s and the 

corresponding optimal control action a based on accumulating 

rewards r(s,a).  Each state-action pair  𝑠, 𝑎  has a value called Q-

Factor that represents the cumulative reward for the state-action pair 
 𝑠, 𝑎 . In each iteration, k, the agent observes the current state s, 

chooses and executes an action a that belongs to the available set of 

actions A, and then the Q-Factors are updated according to the 

reward r(s,a) and the state transition to state 𝑠′ as follows (Sutton and 

Barto, 1998);  

𝑄𝑘 𝑠, 𝑎 =  1 − 𝛼 𝑄𝑘−1 𝑠, 𝑎 + 𝛼  𝑟 𝑠, 𝑎 + 𝛾 max
𝑎′∈𝐴

𝑄𝑘−1 𝑠′, 𝑎′   

where 𝛼, 𝛾 ∈ (0,1] referred to as the learning rate and discount rate, 

respectively.  

The agent can simply choose the greedy action at each iteration based 

on the stored Q-Factors, as follows; 

𝑎 ∈ arg max
𝑏∈𝐴

 𝑄(𝑥, 𝑏)  

However, the sequence 𝑄𝑘  is proven to converge to the optimal value 

under certain condition that is the agent has to visit the state–action 

pair an infinite number of iterations (Gosavi, 2003). This means that 

the agent must sometimes explore, that is, try other actions, rather 

than exploit the best actions. To balance the exploration and 

exploitation in Q-Learning, algorithms such as  𝜖-greedy and softmax 

are typically used (Sutton and Barto, 1998). 

The design elements of the proposed algorithm in terms of the typical 

RL structure (i.e., state, action, reward,...etc) are discussed next; 

 State: 

Three Q-Learning models are developed; each considering different 

possible state representations as follows; 

State Definition1: Arrival of vehicles to the current green 

direction and Queue Length at red directions 

This state is represented by a vector of N components, where N is the 

number of phases. One of the state vector components is the 

maximum arrivals in the green phase and the other components are 
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the maximum queue lengths for the red phases.  This definition can 

be represented as follows:  

𝑠𝑖 =  
𝑚𝑎𝑥
𝑙∈𝐿 𝑖 

𝑄𝑙    𝑖𝑓 𝑖 ≠ 𝑔𝑟𝑒𝑒𝑛 𝑝𝑕𝑎𝑠𝑒

𝑚𝑎𝑥
𝑙∈𝐿 𝑖 

𝐴𝑟𝑙  𝑖𝑓 𝑖 = 𝑔𝑟𝑒𝑒𝑛 𝑝𝑕𝑎𝑠𝑒
   ∀ 𝑖 ∈  1,2, … , 𝑁  

where 𝐴𝑟𝑙  and 𝑞𝑙  are the number of arriving and queued vehicles in 

lane 𝑙  , respectively. The maximum is taken over all lanes 𝑙 that 

belong to the set of lanes corresponding to phase i, 𝐿 𝑖 .  The vehicle 

is considered at a queue if its speed is below 5 kph. Similar state 

definition is used in (Bingham, 2001). 

State Definition 2: Queue length 

State definition 1 may have a drawback. In case the  arrivals in the 

green directions outweigh  the queued vehicles  in the red directions, 

the algorithm may favour  extending the green for the current phase. 

However, in some cases, the best action could be switch to another 

phase with less number of queued vehicles but larger value of the 

cumulative delay for these those vehicles (a few vehicles that have 

been waiting for a while). This is due to the fact that arrivals are not 

proportionally related to the delay experienced by the vehicles in the 

intersection. Therefore, it is plausible to consider the queue lengths as 

a better representation for the delay than state definition 1. Hence, 

state definition 2 is represented by a vector of N components that are 

the maximum queue length associated with each phase. 

𝑠𝑖 = max
𝑙∈𝐿(𝑖)

𝑞𝑙    ∀ 𝑖 ∈ {1,2, … , 𝑁} 

In the RL-based signal control literature, this state definition is the 

most common (Abdulhai et al., 2003)   

State Definition 3: Cumulative Delay 

The vehicle cumulative delay 𝐶𝐷𝑣  is the total time spent by this 

vehicle (v) in a queue. The cumulative delay for phase i is the 

summation of the cumulative delay of all the vehicles that are 

travelling on the L(i).  This state is also represented by a vector of N 

components where each component is the cumulative delay of the 

corresponding phase.  
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𝑠𝑖 =  𝐶𝐷𝑣

𝑣 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔  𝑜𝑛  𝑙 ∈𝐿(𝑖)

      ∀ 𝑖 ∈ {1,2, … , 𝑁} 

This state definition is motivated by the observation that there are two 

cases in which the delay of some vehicles is not properly captured by 

state definition 2: 

Case 1: The maximum queue lengths in two (or more) different 

approaches are equal while their cumulative delay is significantly 

different. 

Case 2: If there is no queue at the current phase but there are still 

some vehicles with high cumulative delay that did not pass the 

stop line, while the queue lengths of other approaches are high but 

the cumulative delays are low.  

In state definition 2, the queue length might be a myopic 

representation of the cumulative delay encountered by vehicles at the 

intersection; a concern that we attempt to address by considering the 

cumulative delay as a state representation as in state definition 3.  

 Action: 

As discussed previously, a variable phasing sequence is used and the 

action is the phase that should be in effect next.  

𝑎 = 𝑖 , 𝑖 ∈ {1,2, … , 𝑁} 

It is worth noting that if the action is the same as the current green 

phase, this means that the green time for that phase will be extended 

by 1 sec (time interval). Otherwise, the green light will be switched to 

phase a after accounting for the yellow, all red, and the minimum 

green times. Therefore, the decision point varies according to the 

sequence of actions taken.  

 Reward: 

The immediate reward is defined as the change (saving) in the total 

cumulative delay, i.e., the difference between the total cumulative 

delays of two successive decision points. The total cumulative delay 

at time t is the summation of the cumulative delay, up to time t, of all 

the vehicles that are currently in the system. Vehicles leave the 

system once they clear the stop line. If the reward has a positive 
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value, this means that the delay is reduced by this value after 

executing the action. However, a negative reward value indicates that 

the action  results in an increase in the total cumulative delay.  

A typical reward function considers the delay experienced by the 

vehicles between two successive decision points ( e.g. Abdulhai et 

al., 2003; Lu et al., 2008). This typical definition however does not 

consider how long the vehicles were delayed before the last decision 

point. Table 1 demonstrates the difference between the reward 

definition of Abdulhai et al., (2003) and Lu et al., (2008) referred to 

as Reward Definition 1 and the our proposed definition, referred to as 

Reward Definition 2. 

Table 1: Illustrative Example for Two-Phase Intersection 

Iteration k-1 Intersection Approach 1 Intersection Approach 2 

Queue Length 2 10 

Cumulative 

delay 

60 0 

Action Switch to Phase 2 (after 

minimum green of 10 sec) 

Extend Phase 1 (by 1 sec 

time interval) 

Iteration k Approach 1 Approach 2 Approach 1 Approach 2 

Queue Length 2 0 0 20 

Delay 

experienced 

between the 

two iterations 

2*10=20 0 0 20*1=20 

Cumulative 

delay 

60+20=80 0 0 0+20=20 

Reward 

Definition 1 

-20 -20 

Reward 

Definition 2 

(60+0)-(80+0)=-20 (60+0)-(0+20)=+40 

It is clearly shown from the above example that the first reward 

definition does not differentiate between the two actions taken by the 

agent (switch to phase 2, extend phase 1). However, the second 

reward definition does not only differentiate clearly between the two 

actions, but also have two opposite signs for the corresponding 

rewards. This is primarily because the proposed reward definition 

reflects the change in the total cumulative delay while the fist 
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definition considers only the absolute value of the delay for the time 

interval between the successive decision points. 

It is also expected that the proposed definition would speed up the Q-

Factors convergence since all the Q-Factors are initiated by zero 

values, and hence the actions that result in negative reward values 

will have the lowest probability to be chosen by the Q-Learning agent 

compared to those of highly positive values.  

 Action selection method: 

In each iteration, the ϵ-greedy method (Sutton and Barto, 1998) is 

used for action selection  in which an ϵ-greedy learner selects the 

greedy action most of the time except for ϵ amount of the time, it 

selects a random action uniformly.  The value of ϵ is chosen to 

decrease gradually with iterations (from 0.9 to 0.1). This will result in 

more exploration at the beginning of the learning process which 

enables the Q-Learning agent to search the overall state-action space 

and gradually emphasizes exploitation as the agent converges to the 

optimal policy. 

Testbed Intersection 

The agent is tested on a major intersection (4-approachs 3-lanes 

including an exclusive left turn lane) in Downtown Toronto in the 

heart of the financial district (Front and Bay Street, see Figure 1). 

This intersection is chosen as an example of an important mutli-phase 

intersection. The morning rush hour observed traffic demand data for 

year 2006 is attached to the figure in a form of an Origin-Destination 

(OD) matrix. Each of EB/WB and NB/SB has separate through and 

left-turn operations, resulting in four phase (movement) combinations 

as shown in Figure 4. The performance of the widely used fixed time 

control is used as a bench mark and is compared to the Acyclic Q-

Learning control agent. The fixed time signal plan is optimized using 

Webster method (Webster, 1958). Paramics, a microscopic traffic 

simulator, is used to build the testbed intersection. The RL platform is 

developed as a standalone program. The interaction between the Q-

Learning agent and the Paramics Environment is implemented 

through the Application Programming Interface (API) functions in 

Paramics.   While it is practically infeasible to continue the learning 

process indefinitely, a stopping criterion is specified to bring the Q-
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Learning to an end. In this implementation, the learning process is 

terminated after 2000 one-hour simulation runs.  

Four discrete intervals are used in state definitions 1 and 2 ([0-1), [1-

3), [3-6), and [6-10]) which results in 256 states. Because of the high 

variability in state 3 (cumulative delay) six discrete state intervals are 

defined to cover wide range of states ([0-5), [5-10), [10-50), [50-100), 

[100-300), and [300-500]) which results in 1296 states. 

Test Scenario Design 

Two demand levels are modelled in this experiment; one represents 

the actual observed demand from field data and the other represents a 

50% increase in the demand level. The latter mimics a future 

forecasting scenario or a severely congested intersection.  For each 

demand level, two demand profiles (i.e. the temporal arrival pattern) 

are considered; uniform profile in which the demand is spread 

uniformly across simulation time, and variable profile in which each 

movement has differently randomized arrival rates around its mean 

arrival rate. This results in total of 12 test scenarios (3 state 

representations x 2 demand levels x 2 demand profiles). 

The models (RL and the Paramics APIs)  are designed to output both 

aggregate and disaggregate level results as needed. At the aggregate 

level, the Q-Factors (Q-Tables) and the total cumulative delay are 

reported for the whole simulation runs and for each run, respectively.  

At the disaggregate level, the queue length for each lane, the average 

delay per vehicle for each lane, and the signal status (the current 

green phase and its current length) are reported.  

Results and Analysis 

Figure 2 demonstrates the convergence of the Q-Learning values. It 

can be seen from Figure 2 Total Vehicles Delay with Simulation 

Runs for (a) actual demand level, and (b) high demand level that the 

proposed acyclic Q-Learning approach consistently and considerably 

outperforms the pre-timed signal plan. For the actual demand case, 

compared to the fixed signal plan, the acyclic Q-learning approach 

reduces the total delay by 36% and 43% for the uniform profiles and 

variable profiles, respectively. The effectiveness of the acyclic Q-
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S

E

Learning algorithm is more vivid in the variable profile case 

compared to the uniform profile which is intuitive.  

For the high demand level, similar trends are observed with 

proportional increase in the total delay values due to the increase in 

the demand level. 

 

Figure 1 Testbed Intersection 

Traffic Movements 

and Phases 

Paramics Network 

Google Satellite Image 

Traffic Volumes (Origin Destination Demand Matrix) 

E S N W Total

E 0 43 48 267 358

S 98 0 757 88 943

N 125 376 0 91 592

W 433 100 97 0 630

Total 656 519 902 446 2523
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(a) 

 

(b) 

Figure 2 Total Vehicles Delay with Simulation Runs for (a) actual 

demand level, and (b) high demand level 

Figure 3 represents an example for the green time allocated for phases 

1 using the acyclic Q-Learning approach compared to the fixed signal 
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plan. It is clearly shown from Figure 3that the acyclic approach green 

splits are adapted to the demand profile. On the other hand, the fixed 

plan assigns a constant green time for each phase based on the flow 

per hour regardless of the demand variability within that hour.  

 

Figure 3 Allocated Green Time and Demand Arrival Percentages 

Figure 4 illustrates the sum of the average approach delays (average 

intersection delay) for the 12 scenarios. It is shown that all state 

representations outperform the pretimed plan. No significant 

difference is observed between state definitions 2 and 3 in the actual 

demand case. However, in the high demand case, state definition 3 

outperforms state 1 and 2. This is primarily due to the higher 

probability of occurrence of cases 1 and 2 (stated above) in higher 

demands level. State definition 1 on the other hand has the highest 

average delay compared to the other state definitions. This might be 

attributed to the low correlation between the cumulative delay and the 

number of vehicles arriving to the intersection. 
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Figure 4 Average Delay Per Vehicle For Different Demand Levels 

and Profile 

Conclusions 

In this paper, Q-Learning-based acyclic signal control system is 

proposed that uses variable phasing sequence. Three models are 

developed; each with different state representation. A reward function 

that represents the cumulative delay reduction is proposed. The 

proposed models are tested on a simulation of a real-world multi-

phase intersection in downtown Toronto and compared to the 

Webster-based pretimed signal control as a bench mark. The results 

showed that Q-learning approach consistently outperforms the 

pretimed signal plan with a wide margin regardless of state 

representations and the demand level. The effectiveness of the acyclic 

Q-learning approach is more vivid in the case of variable demand 

profile compared to uniform profile case; which reflects its 

adaptability to fluctuation in traffic conditions. For observed demand 

levels, there is no significant performance difference between state 

definitions 1 and 2. However, for higher demand levels state 3 

(cumulative delay) is found to be more representative to the traffic 

conditions and produces better results when compared to states 1 and 

2. From a practical perspective though, queue lengths are easier to 
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measure than cumulative delay.  The latter requires advanced sensing 

technology such as GPS or video tracking. 

In this investigation, only the acyclic variable phasing approach is 

developed using the Q-learning algorithm; however, further research 

is needed to explore the performance of fixed phasing sequence 

cyclic Q-learning compared to the proposed approach. Various action 

selection algorithms (e.g. softmax) as well as different RL methods 

(e.g., SARSA, TD(λ)) can be investigated.  
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