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Introduction 
 
Day-to-day dynamics of network flow evolution are to model how the 
network flow pattern evolves after some network disruption or 
facility change takes place. The studies on day-to-day dynamics can 
be roughly categorized into two classes, deterministic models and 
stochastic models. Deterministic day-to-day models all provides 
explicit flow evolution trajectory (e.g., Smith, 1984; Friesz et al., 
1994; Nagurney and Zhang, 1996; Yang, 2005). Stochastic day-to-
day models may focus on the probability distribution of flow states 
and/or the expected flow state (e.g., Cascetta, 1989; Davis and Nihan, 
1993; Hazelton and Watling, 2004). There are also works combing 
(or studying both) stochastic and deterministic models (e.g., 
Canterella and Cascetta, 1995; Yang and Liu, 2007). Several studies 
used the day-to-day dynamical system approach to study the stability 
of network equilibrium (e.g. Horowitz, 1984; Watling, 1999; Bie and 
Lo, 2010). He et al. (2010) pointed out that many earlier path-based 
deterministic day-to-day models have two shortcomings, namely the 
path-flow-nonuniqueness problem and the path-overlapping problem. 
They proposed a link-based model to overcome the two problems. 
 
Recently travelers’ bounded rationality in route choice has been 
incorporated into  day-to-day dynamic models (Guo and Liu, 2011). 
The concept of bounded rationality has been extensively studied in 
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the economic and psychology literature, and it has been shown that 
bounded rationality is important in many contexts (see, e.g., Conlisk, 
1996). In transportation field, there are only a small number of studies 
on bounded rationality. Mahmassani and Chang (1987) studied the 
existence, uniqueness, and stability properties of BRUE in the 
standard single-link bottleneck network. Many simulation and 
experimental studies have incorporated travelers’ boundedly rational 
behaviors (e.g., Jayakrishnan et al., 1994; Hu and Mahamssani, 1997; 
Mahamssani and Liu, 1999; Mahamssani 2000). The simulation 
results of Nakayama et al. (2001) imply a need to examine the 
validity of the perfect rationality assumption in traffic equilibrium 
analysis. Szeto and Lo (2006) used the bounded rationality 
formulation in their dynamic traffic assignment problem. Lou et al. 
(2010) is the first to systematically examine the mathematical 
properties of BRUE in a network traffic assignment context. They 
provided some basic formulation and concepts of the BRUE flow 
solution, e.g., nonuniqueness and non-convexity of the BRUE flow 
set. 
 
Under a boundedly rational (BR) day-to-day dynamic, travelers' 
perception errors are allowed to vary within a presumed bound, and 
the network flow pattern starting from a disequilibrium state will 
evolve towards a boundedly rational user equilibrium (BRUE) state 
rather than the traditional Wardrop user equilibrium (UE) state (Guo 
and Liu, 2011). Because BRUE is a set of equilibrium flow states 
(rather than a single equilibrium flow state as UE), BR day-to-day 
dynamics can model irreversible network changes. That is, when a 
network change is revoked and the network flow pattern changes 
back, it only changes back to the original BRUE flow set, not 
necessarily back to the original BRUE flow point.  
 
This paper demonstrates that a BR day-to-day dynamic has the initial-
equilibrium-state dependence property. That is, simply given a 
starting disequilibrium state, a BR day-to-day dynamic cannot be 
used to predict future flow evolutions. The equilibrium state (i.e., 
BRUE state) that precedes the disequilibrium state must also be 
given. This property has significant implications on BR day-to-day 
dynamic modeling. Specifically, if travelers’ bounded rationality in 
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route choice is to be captured in a day-to-day dynamic, the impact of 
the initial equilibrium condition has to be explicitly considered. This 
means that many existing day-to-day dynamic modeling methods, 
where the next day's flow pattern depends only on the current day's 
situation (and thereby a starting disequilibrium state uniquely 
determines a flow evolution trajectory), cannot be directly extended 
to the case under bounded rationality. 
 
 
Day-to-Day Dynamics under Bounded Rationality 
 
Let a transportation network be a fully-connected directed graph 
denoted as ( ),G N L , consisting of a set of nodes N  and a set of 
links L . Let W  be the set of OD pairs, wd  be the fixed travel 
demand between OD pair w W∈ , wP  be the set of paths connecting 

OD pair w W∈ , t
pwf  be the path flow on path wp P∈  on day t , t

ax  
be the link flow on link a L∈  on day t . Denote demand, path flow 
and link flow vectors as d , tf , and tx , respectively. Let A  be the 
link-path incidence matrix, then t t=x Af . Let Φ  be the OD-path 
incidence matrix, then t=dΦf . Let ( )ac x  be the link cost function 

of link a L∈ , then ( )t
ac x  is the link cost of link a L∈  on day t , 

and we denote ( )tc x  as the corresponding link cost vector. Let tF  
denote the path cost vector on day t , with individual path cost t

pwF , 

then it holds ( ) ( )t t t′ ′= =F A c x A c Af , where ′A  is the transpose of 
A . 
 
The above notations are sufficient for describing discrete-time day-to-
day traffic dynamics. For continuous-time versions, we denote the 
day-to-day path flow dynamic as f , which is the derivative of path 
flow with respect to time, and denote the day-to-day link flow 
dynamic as x . It holds readily =x Af . 
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Denote the feasible path flow set as { }: , 0fΩ = = ≥f dΦf f , and the 

feasible link flow set as { }: ,x fΩ = = ∈Ωx x Af f . We give a formal 
definition of BRUE as below. 
 
Definition 1. A path flow pattern f∈Ωf  is said to be a boundedly 
rational user equilibrium (BRUE) flow pattern if it holds that 

pw w wF µ ε≤ + , if 0pwf > , w W∈  (1) 
where wµ  is the shortest path cost between OD pair w W∈ under 
flow f , and 0wε ≥  is the bounded rationality threshold of travelers 
between OD pair w W∈ .  
 
In the above definition, condition (1) simply states that, under a 
BRUE flow pattern, the travel cost of any used path can be higher 
than the shortest path, but within a threshold. Observe that, when the 
bounded rationality threshold is zero, i.e., 0wε =  for all w W∈ , 
condition (1) reduces to pw wF µ=  for all used paths, and thus the 
BRUE definition becomes the classic UE definition. Also note that, 
the UE flow pattern always satisfies condition (1) (due to pw wF µ=  
on all used paths), and thus is always one BRUE solution. 
 
In some simulation studies (e.g., Hu and Mahamssani, 1997), the 
bounded rationality threshold wε  is given as a percentage of the 
minimum OD cost wµ  rather than a constant value. For example, 

0.1w wε µ=  means that the cost of any used path at BRUE should be 
not more than 10% higher than the minimum OD cost. 
 
The BRUE link flow definition is given as follows. 
 
Definition 2. A link flow pattern x∈Ωx is said to be a BRUE link 
flow pattern if there exists a BRUE path flow f∈Ωf  such that 
=x Af . 
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Note that the above BRUE link flow definition does not put any 
mathematical restriction on the flow pattern beyond the original 
BRUE definition. 
 
A BR day-to-day dynamic is one such that the network flow pattern 
starting from a disequilibrium state (non-BRUE state) will evolve 
towards a BRUE state. Guo and Liu (2011) gave a link-based BR 
day-to-day dynamic to model the phenomenon of irreversible 
network change. 
 
 
Initial-Equilibrium-State Dependence of BR Day-to-Day 
Dynamics 
 
In this section we demonstrate that the network flow evolution under 
bounded rationality depends not only on the starting disequilibrium 
flow state, but also on the initial equilibrium flow state.  
 
We use the same illustrative network as in He et al. (2010). Consider 
a simple network shown in Figure 1, consisting of 4 nodes and 5 links 
with shown node and link numbers. There is one OD pair from Node 
O to Node D connected by four paths numbered as below: 
 

Path 1, link sequence 1 3 4→ → , 
Path 2, link sequence 1 3 5→ → , 
Path 3, link sequence 2 3 4→ → , 
Path 4, link sequence 2 3 5→ → . 

 
 
 
 
 
 
 

 
 

Figure 1. A network to demonstrate the initial-equilibrium-state 
dependence of BR day-to-day dynamics  

 

3 

1 

2 

4 

5 

O 1 D 2 



Guo 6 

 
 
Consider the flowing link cost functions 
 

( )
( )
( )
( )
( )

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

20 5
24
2

20 5

24

c x x
c x x
c x x

c x x

c x x

= +
 = + = +
 = +

 = +

  (2) 

 
Consider that the travel demand between Node O and Node D is 

3d = , and the flow state on day 0 is 

( ) ( )0
1 2 3 4 5, , , , 2,1,3, 2,1x x x x x ′ ′= =x  

which, based on link cost functions (2),  gives a link cost vector 

( ) ( ) ( )0
1 2 3 4 5, , , , 30,25,5,30,25c c c c c ′ ′= =c x  

and a path cost vector 

( ) ( )0
1 2 3 4, , , 65,60,60,55F F F F ′ ′= =F  

Observe that the path flow vector 0f  corresponding to link flow 
vector 0x  is not unique but captured by the following linear equation 
system 

1 2 1

1 3 4

2 4 5

3 4 2

2
2
1
1

f f x
f f x
f f x
f f x

+ = =
 + = =
 + = =
 + = =

 (3) 

From linear equation system (3) it can be verified that it holds 1 1f ≥  

under given link flow vector 0x . 
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Consider that the bounded rationality threshold parameter is 6ε = , 
which is roughly 10% of the average OD travel time 60. Then it can 
be easily seen that the above flow state 0x  is a disequilibrium state 
(non-BRUE state): Path 1 carries a flow 1 1f ≥  while the cost of Path 
1 is higher than the minimum OD cost with a difference 10, 
exceeding the bounded rationality threshold 6ε = . Because the flow 
state 0x  on day 0 is a disequilibrium state, the network flow pattern 
will evolve towards an equilibrium state (BRUE state) as time goes 
on. We can apply a deterministic BR day-to-day dynamic (e.g., Guo 
and Liu 2011) to model the flow evolution process and predict the 
BRUE state that will be attained.  
 
The network topology is characterized by two subnetworks, the 
subnetwork from Node O to Node 1 and the subnetwork from Node 2 
to Node D. Because the starting flow state 0x  is symmetric with 
respect to the two subnetworks, the cost structure given by link cost 
functions (2)  is also symmetric with respect to the two subnetworks, 
and all day-to-day dynamics are based on flow and cost conditions of 
the network, it is expected that the flow evolution starting from 0x  
will also be symmetric on both subnetworks.  
 
So far it seems that the application of a BR dynamic has nothing 
different than the application of any traditional deterministic day-to-
day dynamics: given a starting disequilibrium state 0x , a 
deterministic day-to-day dynamic model can predict a unique flow 
evolution trajectory. However, as to be shown below, the 
incorporation of bounded rationality in day-to-day dynamics makes 
the starting disequilibrium state 0x  alone insufficient in predicting 
future flow evolutions.  
 
Consider the following two scenarios. 
 
Link-1 Lane Closure Scenario: the original Link 1 cost function 
was 

( )1 1 120 2c x x= + , 



Guo 8 

other links had the same cost functions as given by (2), and the 
network was originally at flow state 0=x x  with link cost vector 

( ) ( ) ( )1 2 3 4 5, , , , 24,25,5,30,25c c c c c ′ ′= =c x  

and path cost vector 

( ) ( )1 2 3 4, , , 59,54,60,55F F F F ′ ′= =F  

It can be verified from the above path cost vector that this original 
flow state 0=x x  was a BRUE flow (maximum path cost difference 
not exceeding the BR threshold 6ε = ) and thus could be regarded as 
a long term equilibrium flow pattern. On day 0, a lane was closed on 
Link 1 so that the Link 1 cost function became the one given by (2). 
Then the flow state 0=x x  was no longer BRUE as mentioned earlier 
and the flow pattern will evolve starting from 0=x x . 
 
Link-4 Lane Closure Scenario: the original Link 4 cost function 
was 

( )4 4 420 2c x x= + , 
other links had the same cost functions as given by (2), and the 
network was originally at flow state 0=x x  with link cost vector 

( ) ( ) ( )1 2 3 4 5, , , , 30,25,5,24,25c c c c c ′ ′= =c x  

and path cost vector 

( ) ( )1 2 3 4, , , 59,60,24,55F F F F ′ ′= =F  

It can be verified from the above path cost vector that this original 
flow state 0=x x  is a BRUE flow (maximum path cost difference not 
exceeding the BR threshold 6ε = ) and thus could be regarded as a 
long term equilibrium flow pattern. On day 0, a lane was closed on 
Link 4 so that the Link 4 cost function became the one given by (2). 
Then the flow state 0=x x  was no longer BRUE as mentioned earlier 
and the flow pattern will evolve starting from 0=x x . 
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In both the Link-1 and the Link-4 lane closure scenarios, after the 
lane closures happened on day 0, the new network conditions in terms 
of the cost structure and the starting disequilibrium state are exactly 
the same. Therefore, applying any traditional deterministic day-to-day 
dynamics, the flow evolution processes in the two lane-closure 
scenarios will be the same, which, however, is problematic in view of 
the following observations.  
 
Similar to He et al. (2010), by examining the network shown in 
Figure 1, we can see that the network is “separable”: the subnetwork 
from Node O to Node 1 and the subnetwork from Node 2 to Node D 
are totally independent of each other. As a result, a lane closure on 
Link 1 should not affect the flow split between Link 4 and 5, and a 
lane closure on Link 4 should not affect the flow split between Link 1 
and 2. More rigorously, it could be stated as below: 
 
Observation 1. For the network shown in Figure 1, assuming a fixed 
travel demand and separable link cost functions (i.e. no spillback 
effect), and consider that the network flow is originally at stable 
equilibrium, then, if a lane closure on Link 1 takes place, the flow 
split between Link 4 and Link 5 should remain stable and unchanged. 
If a lane closure on Link 4 takes place, the flow split between Link 1 
and Link 2 should remain stable and unchanged. 
 
Observation 1 is a reasonable and logical “expectation” about the 
network shown in Figure 1, and a model that violates this expectation 
is at least not amenable to this small network. According to 
Observation 1, in the Link-1 lane closure scenario, the disequilibrium 
flow evolution process should occur only on Link 1 and 2, while in 
the Link-4 lane closure scenario, the disequilibrium flow evolution 
process should occur only on Link 4 and 5. On the other hand, as 
discussed earlier, when we apply any traditional day-to-day dynamic 
model, the two scenarios will give the same flow evolution process 
which will impact all the links. 
 
The above contradiction implies that, simply given a starting 
disequilibrium state, a BR day-to-day dynamic cannot be used to 
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predict future flow evolutions. The equilibrium state (BRUE state) 
that precedes the disequilibrium state must also be given. In the above 
example, the flow 0x  on day 0 is not a BRUE flow and thus we know 
the network flow pattern will have to evolve. However, without 
knowing the original equilibrium scenario from which the current 
disequilibrium state 0x originates, we cannot tell how the network 
flow pattern will evolve. In summary, for a given disequilibrium 
state, there exists multiple initial equilibrium states (BRUE states) 
that could have lead to the disequilibrium state, without proper 
information on the initial equilibrium states, a BR day-to-day 
dynamic cannot be applied. This property of BR day-to-day dynamics 
is referred to as initial-equilibrium-state dependence in this paper. 
 
 
Conclusions 
 
This paper demonstrates the initial-equilibrium-state dependence 
property of day-to-day dynamic models under bounded rationality. 
That is, simply given a starting disequilibrium state, a BR day-to-day 
dynamic cannot be used to predict future flow evolutions. The 
equilibrium state (i.e., BRUE state) that precedes the disequilibrium 
state must also be given. This property has significant implications on 
BR day-to-day dynamic modeling. Specifically, if travelers’ bounded 
rationality in route choice is to be captured in a day-to-day dynamic, 
the impact of the initial equilibrium condition has to be explicitly 
considered. This means that many existing day-to-day dynamic 
modeling methods, where the next day's flow pattern depends only on 
the current day's situation (and thereby a starting disequilibrium state 
uniquely determines a flow evolution trajectory), cannot be directly 
extended to the case under bounded rationality. 
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