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NETWORKS IN TRANSPORTATION – THEORY 
Joseph Monteiro, Gerald Robertson and Ben Atkinson 

 

I.  Introduction  
 

Networks have always been important in transportation and 

telecommunication. However, they have become more important for 
all businesses today, especially because of the Internet. The Internet 

(originally conceived as a “network of networks”) has connected 

virtually everything today. It has connected everybody, everything, 

everywhere into a network. Of course the Internet has also changed 

how existing networks (e.g. transportation) behave.  

 

This provides the motivation for this paper – networks in 

transportation.  Part II reviews the mathematics or use of mathematics 

in transportation networks.  Part III reviews the theory of network 

evolution and growth, and the economic theory in market with 

networks.  In Part IV, whether networks in transportation create 
barriers to entry is briefly examined.  Part V provides a few 

concluding remarks 

 

II. The mathematics or use of mathematics in transportation 

networks 
 

In solving problems in transportation networks, graph theory in 

mathematics is a fundamental tool.  The term >graph= in mathematics 
has two different meaning. One is the graph of a function or the graph 

of a relation (eg. a stock price over time). The second, usually related 

to “graph theory”, is a collection of >vertices= or >nodes= and, “links” 

or >edges=.  For purposes of this paper we are concerned with the latter 

type. Graph theory has been closely tied to its applications and its use 

first can be credited to transportation (Euler- the Konigsberg bridge 
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1736) followed by its application to other fields - electrical networks 

(Kirchhoff-1847), organic chemistry (Cayley-1857), and puzzles 

(Hamilton-1857).  Its use today has spread and extended to many 

other fields of study (e.g. chemistry, computer science, ecology, 

genetics, physics, telecommunications, transportation networks). 

 
In transportation, graph theory is most commonly used to study 

problems of: A.  Routing - the one way street problem, the 

Konigsberg bridge problem, the Chinese postman problem, the 

travelling salesman problem, etc; and B. Networks - the maximum 

flow problem, the minimum cost flow problem, the transportation 

problem, etc.  We shall describe these problems and show how graph 

theory is used to resolve them.  But first a few terms shall be 

explained.   

 

A graph >G= in the above sense consists of two things: a set V whose 

elements are called >vertices= or >nodes=; and a set E of unordered 

pairs of distinct vertices, called >edges=.  It is commonly denoted as 

G(V, E). In the example of a simple graph G below, the set of vertices 

(points) V={a,b,c,d,e} and the set of edges(lines) E={ab,ac,bc,cd,de}. 

 
 

 

If the edges have a sense of direction then it is usually referred to as a 

directed graph(digraph). Sometimes multiple connections between the 

same vertices are allowed (multigraph) and sometimes loops 

(pseudograph). Two vertices are said to be adjacent (or neighbours) if 

there is an edge from one to the other. The degree of a vertex is the 

number of edges at that vertex. In the example above deg(a)=2, 

deg(b)=2, deg(c)=3, deg(d)=2, deg(e)=1. If we add up the degrees 
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from a graph we get twice the number of edges because each edge 

gets counted twice, once for the vertex at either end.  

 

There are some names used for special types of graphs, “null graphs” 

with no edges, “complete graphs” with every vertex joined to every 

other vertex, “cycles” which  only join the outside of the vertices, 
“wheels” which add a vertex at the centre (see below from Rosen, p. 

448). 

 

Complete 
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(Economides, pp. 472-474.) 

 

 

 

 
(Economides, p. 110.) 

 

A)  Routing 
i) The one way street problem  - One of the problems faced by cities 
to control the flow of traffic is to ask whether it would be possible 

to convert two-way streets into one-way streets without getting into 

trouble  i.e., ending up with some places that one can get into and 

never leave.  That is for every pair of locations (x and y), is it 

possible to reach x from y and vice versa?  Let us take a graph >G= 
in the shape of a square with four sides, then let us give it a 

orientation (i.e., direction to each edge of G or diagraphs going 

clockwise) that is strongly connected [1].  In such a case, it is 

always possible to get from one vertex to another.   
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But for other graphs, this may not always be possible, for example 

take two triangles in one case with a bridge (i.e., a connecting edge) 

and in another case without a bridge.   

 

 

 

 

 

 

 
 

(Roberts, p. 450) 

 

To solve this problem one has to ensure that Robbins= theorem (which 
states: A graph G has a strongly connected orientation if and only if 

G is connected and has no bridges) is satisfied.  But the theorem does 

not tell us how to find an assignment for a connected bridgeless 

graph.  One way to do so is to use an algorithm known as A Depth 

First Search Algorithm.  This algorithm, however, does not tell us 

whether it is efficient or inefficient in the sense of being the shortest 

one way street assignment.  Fred Roberts states that there is evidence 

that no such algorithm exists.  

 

 

ii) The Konigsberg bridge problem - The town of Konigsberg had 

seven bridges and its people wanted to know if one could start at 
some point, cross each bridge exactly once and return to the starting 

point.  L. Euler whose name has been credited for solving this 

problem translated it into a graph theory problem.   
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The Königsberg Bridge problem, (Wikipedia – Graph Theory) 

 

The problem can be solved if it has a eulerian closed chain.  A chain 

or path is eulerian in a multigraph G if it uses every edge of G once 

and only once.   This led to the formulation of Euler=s famous 
theorem (A multigraph G has an eulerian closed chain if and only if 

G is connected up to isolated vertices and every vertex of G has even 

degree).   

 

In other words, G must be connected up to isolated (has no neighbors) 

vertices, that is, at most one component has an edge.  In addition, 
each vertex has an even degree (each edge must leave a vertex as 

often as it enters).  Since the Konigsberg graph does not have a 

eulerian closed chain (some vertices are odd degree), the people of 

Konigsberg could not complete the walk as wanted.  To solve 

problems for graphs that are not closed or multidiagraphs other 

conditions need to be satisfied (see other theorems by Euler and 

Good).[2]  Variations have been added to the original problem by 

adding one, two  and three more bridges or edges and inquiring 

whether the walk is possible and from which vertex.     

       

iii) The Chinese postman problem - The Chinese postman problem or 
postman problem has been used to describe finding the shortest 

delivery or shortest carrier=s route that involve starting from a point or 

post office in a territory and returning to the point or post office.  

Once again graph theory is used to solve the problem by building a 

graph G with each vertex representing a street corner and each edge 
representing a street.  In other words, the mail carrier seeks a closed 

chain beginning and ending at the same point, using each edge at least 
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once.  If the graph has an eulerian chain, one can begin at a point and 

end at the same point.  No chain can give a shorter route.  If there is 

no such eulerian closed chain, modify G, by adding enough copies of 

each edge to exactly achieve the mail carrier=s route.  One may be 
able to do this in more than one way.  The solution is to add the 

smallest number of copies of edges of G to obtain a multigraph which 

has a eulerian closed chain.  In other words, solution to these 

problems (and others eg. street sweeping, RNA chains, etc.) require 

the application of a eulerian chain. Variations to the Chinese problem 

have been studied.  

 
iv) The travelling salesman problem - The salesman problem is used 

to describe a situation when a salesman wishes to visit n different 

cities, each exactly once, and return to the starting point, in such a 

way as to minimize cost.  Once again, graphs are used to formulate 

the problem where the cities are denoted by vertices or a complete 

symmetric diagraph.  The arcs of the diagraph are given a weight, 

representing its costs (cost from one city to another).  To solve this 

problem we seek a hamiltonian cycle in this diagraph which has 

minimum sum of weights.  (A hamiltonian chain or path is one that 

uses each vertex once and only once).  However, not every graph has 

a hamiltonian circuit.  There are conditions for the existence of a 
hamiltonian circuit and cycle in a graph and diagraph.  These 

conditions are expressed in theorems by Ore, Dirac, Bondy and 

Chvatal, Woodall, Ghouila-Houri.  In other words, solution to these 

problems (and others eg., tournaments, etc.) require the application of 

a hamiltonian chain.     

 

v) The shortest route problem - The shortest route problem is finding 

the shortest route between two vertices or cities represented by them 

in a network.  To solve this problem we use a directed graph network 

or directed network and place weights indicating length on each arc.  

If it is a small network with a few arcs one can manually calculate the 

shortest route and there may be more such routes.  But in a large 
network, finding the shortest route may be very tedious.  To avoid 

doing it manually, an algorithm known as Dijkstra=s Algorithm is 

used on a directed network. This is sometimes called the single-pair 

shortest path problem to distinguish it from other problems i.e., 
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single-source shortest path problem, single destination shortest path 

problem and all-pairs shortest path problem.  Other algorithms exist 

for solving these problems (or when weights are negative) such as 

Bellman-Ford, A* search, Floyd-Warshall, and Johnson's algorithm.  

Additional algorithms and associated evaluations may be found in 

Cherkassky et al.@[3]  
 

B) Networks 
The Concise Oxford dictionary defines it as an Aarrangement with 

intersecting lines & interstices...   In mathematical topology, it is 

defined as ...a figure (in a plane or in space) consisting of a finite, 
non-zero, number of arcs, no two of which intersect except possibly 

at their end.[4]  In this sense, it is more restrictive than some of the 

graphs described earlier.   

 

i)  The maximum flow problem - The maximum flow problem is to 

find a feasible flow through a single-source, single-sink flow network 

that is the maximum.  The maximum value in a directed network of 

an s-t flow is equal to the minimum capacity of an s-t cut in the 

network, as stated in the max-flow min-cut theorem.  (A cut can be 

considered as the set C of all arcs that go from vertices in set S to 

vertices in set T eg. If S={1,2} and T={3,4,5,6,7} then C={(1,4), 
(2,3), (2,4)} note (5,2) is excluded as it goes from set T  to set S).   
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An (s, t) flow is maximum if and only if it admits no augmenting 

chain from s to t.  An augmenting chain C is one in which the flow 

(xij ) is less than the weight or capacity of the arc (cij ) for each 

forward arc and the flow (xij ) is greater than 0 for each backward arc. 

The above theorem is based on the assumption that there exists a 

maximum flow.  If some capacities are not rational numbers, the 
maximum still exists, though the algorithms for solving it do not 

necessarily find a maximum.  There are a number of algorithms for 

solving this problem.  The best known are: the Ford-Fulkerson; 

Edmond-Karps; and Dinitz Blocking Flow.[5] Besides the above 

problem, there are a number of interesting applications that follow 

from the integral flow theorem which could have applications to 

problems in transportation. These are: Multi-source multi-sink 

maximum flow problem; Minimum path cover in directed acyclic 

graph; Maximum cardinality bipartite matching; Maximum flow 

problem with vertex capacities; Maximum independent path; and 

Maximum edge-disjoint path (Wikipedia).   

 
ii)  The minimum cost flow problem – The minimum cost flow 

problem is finding the cheapest possible way of sending a certain 

amount of flow (positive) from source s to sink t through the network 

at a minimum cost (i.e., nonnegative capacity (cij ) on each arc and 

nonnegative cost (aij )). The transportation problem can be viewed as 

a minimum cost flow problem.  Imagine that a particular commodity 

is stored in n warehouses and is to be shipped to m markets.  Let ai 

and bi be the supply and demand at each warehouse and market, 

respectively.  Let aij be the cost of transportation and let total supply 

equal to total demand (i.e., 3ai = 3bj ).  The problem is to find a 

shipping pattern that minimizes the total transportation cost (3aij xij   

i=1...n, j=1...m) subject to certain constraints --- total amount of 

commodity shipped from the ith warehouse is at most the amount 

there (3 xij #ai, j=1...m) and total amount of commodity shipped to 

the jth market is at least the amount demanded (3 xij #bj, i=1...n).  Any 

solution satisfying these two constraints will also satisfy 3 xij =ai, 

j=1...m; and 3 xij =bj, i=1...n - since supply equals demand. 
 

Thus, the solution to these problems requires certain assumptions to 

be satisfied.  The problems can be resolved either using the simplex-
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method or network flow theory.  It is worthwhile noting that there is a 

difference between the transportation problem and transshipment 

problem.  The latter permits shipping via intermediary nodes whereas 

the former does not. Algorithms have been developed to solve these 

problems (Wikipedia). More general problems are minimum cost 

maximum flow problem and minimum cost circulation problem.  
 

In sum, we have attempted to briefly describe the use of graph theory 

in mathematics to solve some of the basic network transportation 

problems.  We have attempted to simplify it with the use of graphs 

and keep it as verbal as possible.  Besides graph theory there are other 

types of mathematics that can be used to solve these problems such as 

combinatorics, game theory and linear programming techniques.        

 

III. The Economic Theory of Networks in Transportation  
The concept of network in economics is not new.  It was implicit in 

the work of Quesnay (1758), Cournot (1838) and Pigou (1920).  The 

latter studied a network system in the setting of a transportation 
network consisting of two routes and noted that the ‘system-

optimized’ solution was distinct from the ‘user-optimized’ solution.  

More recently it originated in the work of Samuelson (1952), 

Takyama and Judge (1971), and  Dafernos and Nagureny (1985) who 

identified the isomorphism between traffic network equilibrium 

problems and spatial equilibrium problems.  Some writers have 

identified the general equilibrium problem known as Walrasian 

equilibrium as a network equilibrium problem over an abstract 

network.[6]  

 

i) Theory of Network Formation and Growth in Transportation – 
Network theory has been developed in various branches of science, 

including economics and transportation. Its emphasis from time to 

time has shifted.  A review of some of the literature and review 

articles does not indicate that there is any general theory of network 

formation in transportation.  The theory of how and why networks 

have formed in one mode of transportation may not apply to another 

mode and going up and down the web of history does not provide a 

unique answer.  Various attempts have been made and an excellent 

review (Xie and Levinson) on the subject indicates that studies have 
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developed along three main streams: geography of transport 

networks; optimization and design of networks; and science of 

networks.  Two other streams worthy of mention are: statistical 

analysis of networks; and economics of networks.[7]   

 

Geography of transport networks (1960s): The geography of 
transport network models determine the transportation networks in 

terms of their structural formation/transformation and topological 

changes.  It first introduced graph theory to model continuous growth 

of transportation networks beginning with: a few scattered nodes 

representing ports along the coast; a few roads penetrating inland 

from these ports; a few inland feeders and connecting ports because 

of trading; and links developed to interconnect developed nodes (see 

diagram).  Also see diagrams on page 3. 

 
 (Xie and Levinsen, p. 293.) 

 

Other studies, instead of following the above historical growth 

pattern, replicated observed networks attempting to simulate the 

changing topology.  For example, in rail, the first link is added to 

connect the two largest settlements and then links are gradually added 

or as a tree branching out to connect outlying peripheral nodes.  This 

first stream of network studies became dormant for thirty years as 

they were criticized for failing to emphasize the mechanisms as to 
why and how networks form and grow.    

 

Optimization and design of networks (1970s): The optimization 

network models determine cost minimization of building and 

maintaining a network or the optimal changes in transport supply 
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(existing links or on networks) that minimize user costs on the 

network under budgetary constraints.  See examples on pages 5 and 6.  

The optimization models were developed with the availability of 

traffic flows and demand forecasting.  Since then the concept of a bi-

level optimal network design has dominated consideration of the 

evolution of networks within urban transportation planning.  The 
lower-level represents the demand-performance equilibrium for a 

given investment while the upper level represents the investment 

decision-making of the transport planner to maximize social welfare 

based on the unique equilibrium flow patterns from the lower-level 

problem.  This second stream has been subject to two main criticisms:  

it neglects the continuous interplay between many factors in shaping 

the structure of transportation networks; and lack of empirical 

evidence to show that transportation networks over time actually 

follow an optimal design.    

 

Science of networks (2000s): The science of networks examines 

complex networks.  It is based on the observation of a unique power-
law distribution of a variety of ‘scale-free’ networks.  As new nodes 

enter a free-scale network, they are more likely to get connected to 

highly connected nodes than less connected nodes, a process called 

‘preferential treatment’.  In transportation, particularly surface, spatial 

constraints, limit the relevance and applicability of this growth 

mechanism of preferential attachment.  It may, however, provide 

insights into: hub and spoke networks (non-geographical air 

transportation networks); independent node connection to established 

and important nodes; and self-organization and order into large scale 

networks.  Recent work has concentrated on self-organization in 

complex systems and agent based simulation to interpret dynamics of 
transportation networks.  This third stream is subject to the criticism 

that it may not apply to most transportation networks. 

 

Statistical analysis of networks (1975-): The statistical analysis of 

networks investigates the temporal change of transportation supply 

based on historical observations.  The statistical analysis grew with 

the availability of appropriate types of data.  They relate the change 

of transportation supply to the demographic and socio-economic 

characteristics of tributary areas, as well as traffic conditions and 



            13      Monteiro, Robertson and Atkinson 

other attributes of infrastructure.  Simultaneous equations were used 

to examine mutual causality of demand and supply (transit, roads, 

infrastructure, etc.).     

 

Economics of networks (1990s): The economics of network growth 

examines various economic dimensions of network growth, ranging 
from traditional transportation economics to public finance, path 

dependence, network effects, and coalition formation network.  

Transportation economics at the micro level examines network 

pricing, ownership structures and capacity investment and at the 

macro level examines the development of all modes of transport as a 

mix of private and government initiatives.  Public finance relates to 

the provision of networks as a public good.  Path dependence (present 

network system depends on the past) indicates that it may lead to 

lock-ins and  market failure that are regrettable and difficult to change 

even in a world characterized by maximizing behaviour. Coalition 

formation models networks as the formation of links.  They have 

developed as: strategic interaction models, random models and game 
theoretic models.  The economic stream is theoretical in approach and 

were developed more to explain networks in other markets.  Network 

effects examine the externalities (positive and negative) that result 

due to the demand and supply of networks. We shall examine 

coalition models and the network effects in greater detail hereafter.   

 

ii)  Strategic interaction models: The best known of these models is 

the connections model.  This model (Jackson and Wolinsky)[8] 

simply states that people benefit from being well connected to each 

other.  In this model, the payoff to agent i in a network g is  

                                         ui(g) =3j…i Ml(ij) -dic 
where l(ij) is the number of links in the shortest path between i and j 

in g (setting l(ij)=4 if there is no path between i and j), di is i’s degree 
(the links that i maintains in g), and c is a parameter representing the 

cost of a link. So people get benefits from maintaining direct 

connections that link one to another and also indirect benefits.  The 

stability/equilibrium concept incorporates the idea that mutual 

consent is needed to form a relationship but people can unilaterally 

sever a relationship.  “A  network g is pairwise stable if: (i) if there is 
an i and ij not in g such that ui(g+ij)>ui(g) then uj(g+ij)<ujg; and (ii) 
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for all ij in g and i ui(g)šui(g-ij)’. If costs are low and below benefits 
links are formed and are pairwise stable.  If costs are prohibitively 

high no links are formed.  In cases when the costs are low or high, 

then the total utility maximizing networks is the unique pair wise 

stable network. When costs are intermediate, then the total utility 

maximizing network is a star, but stars[9] will often not be pair wise 

stable even when they maximize total utility.  Other considerations 

have resulted in this basic model, being extended to include them.  

Examples of models are: spatial connections model, free trade 

models, market sharing models, social markets model, co-author 
model, etc.     

 

b)  The random models:  Random models of network formation are 

from the random-graphs literature mainly developed by 

mathematicians and physicists.  In these models the reason why a link 

is formed is pure chance.  This literature builds networks either 

through a purely stochastic process where links appear at random 

according to some distribution or through some algorithm for 

building links.  This approach is mainly dynamic and provides insight 

into how networks form.         

 

c)  The game theoretic models:  Game theoretic models of network 
formation provide novel insight into the patterns that might emerge 

and into the tensions between individual incentives to maintain 

relationships and overall welfare.  It takes the network structure as 

given and studies how the network structure impacts on outcomes and 

individual decisions.  There can be multiple equilibria and such 

models can be difficult to solve. 

 

iii) Network Externalities in Transportation - The theory of network 

externalities advances the notion that benefits or costs may arise on 

the supply-side or the demand-side that are not taken into account in 

the pricing mechanism.  On the supply-side, the joint provision of 
service by members may result in economies or diseconomies that are 

not captured or paid for by providers of the network.  Similarly, on 

the demand-side, externalities may arise because they are not 

captured or paid for by users of the network. These externalities arise 

because of the subtle interdependencies in the welfare of different 
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units - interdependencies which cannot readily be reflected in the 

pricing arrangement.[10]  This is because it cannot be easily  

measured or because mechanisms do not exist to collect them or to 

collect them efficiently.  This has implications for the allocation of 

resources even in perfectly competitive markets.[11] Network effects 

have largely been developed in telecommunications (with regard to 
benefits) and transport (with regard to costs).  These externalities 

provide the basis for the theory.   

 

Examples of externalities can be found in transportation.  On the 

supply-side, the establishment of a shipping line at a port may lead to 

expenditures to create a pool of related services which a new shipping 

line does not have to pay for.  Or the expansion of an industry or a 

shipping line may make it cheaper for other shipping lines to operate 

because of lower cost in the supply of inputs.  On the demand-side, 

the increase in cars or trucks on a highway network can increase 

congestion and ultimately result in gridlock which increases the cost 

to all vehicles which is not taken into account in the consumption or 
production pricing of transport services.  Or the increase can result in 

more noise or air pollution whose costs do not have to be borne by 

the users of the highway.  Or the addition of segments or arteries to a 

rail or road network may provide benefits to the existing users of 

these networks by enabling them to send traffic or travel to 

destinations that were previously not available to the existing users or 

by making complementary products available (eg. more fuel and 

restaurant facilities). In addition, the Internet allows the creation of all 

kinds of new products complementary to transportation. 

 

The special features of markets with network effects have been 
described by Professor Economides.  Those applicable to transport 

are highlighted.  First, a firm can make money from either side of the 

network.  Second, an additional user of the network is not rewarded 

for the benefit it brings to others.  Third, the pace of market 

penetration (market expansion) is much faster in network industries 

than in non-network industries.  Fourth, markets with strong network 

effects where firms can chose their own technical standards [eg. 

different rail gauges] are >winner-take-most= markets resulting in 
extreme market share and profit inequality.  Fifth, in industries with 
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significant network externalities, under conditions of incompatibility 

between competing platforms, monopoly may maximize social 

surplus.  Sixth, inequality is natural in the market structure of 

network industries.  Seventh, free entry in network industries does 

not lead to perfect competition and eliminating barriers may not 

significantly affect market structure.  Eight, >winner takes most= is the 
natural equilibrium in these markets.  Ninth, competition for the 

market takes precedence over competition in the market at least 

initially. Tenth, is the importance of path dependence - today=s sales 
depend on past number sold. 

 

In sum, studies to model the evolution and growth of transportation 

networks have ranged from geographical studies that aim to replicate 

geometries based on intuitive and heuristic rules, optimization studies 

that predict optimal network designs subject to an explicit objective 
function, to simulation studies that model network formation 

employing agent based methods.  Economic studies to model 

transportation networks concentrate on strategic interaction models, 

random models and game theoretic models, their focus is more on 

networks and network effects than on transportation.  So to-date there 

is no general economic theory on why and how networks are formed 

that is empirically verifiable.   

 

IV. Are Networks in Industries Barriers to Entry  
 

Barriers to entry arise from: absolute cost advantages over potential 

entrants; product differentiation advantages over potential entrants; 
and economies of large scale.  By absolute cost advantages we mean 

established firms have no cost advantages in the purchase of factors 

of production; the entrant would have no perceptible effect on the 

going level of any factor price; the established firm has no preferred 

access to productive techniques.  They arise from: control of 

production techniques (patents, IP); imperfections in the market or 

ownership or control of strategic factors; limitations of the suppliers 

of productive factors in specific markets; money market conditions 

(higher interest rates for potential entrants); and sunk costs.  By 

product differentiation advantages we mean the preferences that 

buyers have for established networks over new networks.  They arise 
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from: brand names and company reputation; superior product designs 

through control of patents; and ownership or control of favoured 

distributive outlets.  By economies of large scale we mean declines in 

cost as output increases.  They arise from: real economies of large 

scale production or distribution (arising from indivisibilities of factors 

of production); pecuniary economies (bargaining) of large scale 
production; pecuniary economies of large scale advertising or 

sales.[12]  

 

Do Transportation Network Industries have Absolute Cost 

Advantages?  Being spatial and geographic established transportation 

network industries have an absolute cost advantage, some modes 

more than others.  Land is a scarce resource in major cities, as a 

result, building new railway tracks or an airport with runways and 

buildings or a new sea port terminal is usually not possible.  The price 

of land would certainly increase if there was any knowledge that a 

firm intended to build.  Further, most of such projects need regulatory 

approval not only from transportation agencies but also from 
environmental agencies which usually takes many years.  

Furthermore, if there are any restrictions in the area of operation of an 

entrant as a result of licences or bilateral agreements there may be 

other absolute cost advantages.  In addition most of these costs are 

sunk.  In contrast to the above, in truck transportation or passenger 

bus transportation, the setting up of terminals may be much easier.  

This makes market penetration by a new entrant in most 

transportation network industries much slower than would occur in 

non-network industries.   

 

Do Transportation Network Industries have Product Differentiation 
Advantages?  Most established transportation network industries have 

product differentiation advantages arising out of company reputation 

and favoured locational advantages such as being down town or near 

the city.  Their company reputation arises largely from their 

experience and number of years of being in business.    

 

Do Transportation Network Industries have Economies of Large 

Scale?  Transportation network industries do not have economies of 

scale in general, except the rail industry.  However, they do have 
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network economies, for example an additional user of the network 

brings benefits to other users of the network (through increases in 

load factor or traffic density thereby lowering cost and price), the 

pace of market penetration or expansion is much faster in network 

industries than in non-network industries.  The existence of pecuniary 

economies, if any, is not considered to be significant.   
 

In sum, we believe that there are barriers to entry in network 

transportation industries that range from high to medium to low 

depending on the mode and the specifics of each situation. Network 

effects have resulted in a market structure dominated by a few firms 

where bigger is better, in some modes of transportation.[13]    

 

V. Concluding Remarks  
Networks have always been important in transportation.   They are 

widespread in Canada providing everyday links from home to work, 

life lines to diverse regions together with corridors for our export and 

import trade.  Our economic futures are more closely tied to the 

sustainablility of our transportation networks than we might care to 

admit.  They define the key to success in today’s dynamic 

marketplace.  They are a strategic tool to gain competitive advantage.  

This is particularly true today in the context of globalization.   

 

The mathematical tools required to describe transportation networks 

is straightforward ranging from graph theory to linear programming.  
It enables one to logically formulate problems and solve problems 

related to routing - the one way street problem, the shortest route, the 

least cost route, etc. and problems related to network - the maximum 

flow, the minimum cost flow, the transportation problem, etc. 

 
Network theory enables one to understand the formation, evolution 

and growth of networks in transportation.  This improved 

understanding could reveal how decisions made in one point of time 

affect future choice.  It could help planners and decision-makers 

desiring to shape the future by improving planning and designing of 

transportation networks so as to exploit network economies and 

externalities.  It could help create optimal networks that will not only 
improve the flow of traffic but also reduce time lost due to 
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congestion.  It could also give planners an insight when certain 

segments are reaching capacity, so that they may plan alternative 

routes to avoid bottlenecks that could arise from sudden increases in 

both its own network traffic and traffic from other modes.    

 

Networks in transportation sometimes create barriers to entry into the 
industry and at times it could create concern from the competition 

policy perspective.  The reason is that theory indicates that such 

industries are likely to be dominated by a few large firms where 

winner takes most.  This makes market penetration by a new entrant 

much slower than would occur in non-network industries and 

increases the likely duration and the value of market power.  It thus 

increases the incentive and the likelihood that the dominant carrier 

will engage in anti-competitive acts to maintain its dominance or for a 

new carrier to obtain its market power. The anti-competitive acts can 

range from: denying access, tying, entering exclusive agreements, 

refusing to supply, etc. However, both the US and the EEC antitrust 

authorities have not shown any indication that network industries are 
so special as to require different treatment from other industries with 

essential facilities or that they need the application of a special set of 

rules in reviewing antitrust concerns at the present time. 
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Endnotes 

[1] To show that a graph is connected one usually employs a highly efficient procedure 

known as the depth-first search procedure.  Efficiency here refers to computational 

complexity.   

[2] See Fred Roberts, Applied Combinatorics, Rutgers University, 1984, pp. 460-461.   

[3] See Wikipedia, www.wikipedia.org 

[4] Arnold, B.H., Intuitive Concepts in Elementary Topology, 1963, p. 31. 

[5] The others are listed in maximum flow problems in www.wikipedia.org 

[6] Network Economics: An Introduction, Anna Nagurney, 2002. 

[7] Feng Xie and David Levinson, Topological evolution of surface transportation 

networks, Computers Environment and Urban Systems, Volume 33, 2009, p. 211; and 
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Modeling the Growth of Transportation networks: A Comprehensive Review, New 

Spatial Economics, Volume 9, 2009, pp. 291-307. 

[8] There are various types of networks: star (all nodes linked to centre node or hub and 

spoke); star with two dominant hubs; star with all nodes connected; empty networks 

(no nodes connected); networks with one or some nodes fully connected (referred to 

dominant group networks); generalized interlinked star (i.e., where the centre and three 

nodes are all connected and two nodes are only connected to the centre node).   

[9] See reference 16 in Bibliography. 

[10] Baumol, W., J., Economic Theory and Operation Analysis, p. 370. 

[11] An interesting implication of this for competition advocates is that where there are 

external diseconomies, the presence of monopolies can lead to outputs smaller, and 

therefore more nearly optimal, than those which would result from competition.  See 

Baumol, W., p. 370.  

[12] Bain, J., Industrial Organization; and Barriers to Entry.   

[13] In Canada, in rail and air transportation we have a duopoly and on some segments 

there is a monopoly.   


