

Intelligent Transportation Systems The Practice and The Promise

CTRF 46th Annual Conference Gatineau, QC May 31, 2011

Intelligent Transportation Systems (ITS)

- Background
- Framework for Deployment
- New Directions

Intelligent Transportation Systems (ITS) Background

- Initiated in the early 90's
- 2. Responds to:
 - Congestion
 - Energy
 - Environment
 - Safety
- 3. Cost/challenges of of deploying technology
 - (e.g. Traffic control systems)
- 4. Led by government (U.S., Japan, Europe)
 - Research
 - Planning
 - Pilots/Demonstration Projects
- 5. Economic Development
- World wide network of ITS Associations

IntelligitatTEanTspostationatBysSeyrstems

"the application of advanced sensor, computer, electronics, and communication technologies and management strategies — in am integrated mammer—two improves the saffety and efficiency of the surface transportation system"

1. Efficiency

- Increase vehicular throughput without added lanes
- Strategic traffic management
 - Networks
 - Corridors
- Route, time and mode choices
 - Traveller information
- Management of traffic incident and other events

2. Safety

- Collision avoidance
- Roadway condition warning (traffic, weather, animals, etc.)
- Mixed use warning (pedestrians, cyclists, etc.)

3. Environmental

Emissions and consumption

Objectives of an ITS Plan

- Reduce cost and time to deploy technology
- Maximise value from the investments:
 - Standards
 - Common data structures
 - Interchangeable devices
 - Interoperable subsystems
- Framework for interagency cooperation

Scope of ITS

- Traffic Management (ATMS)
- Traveller Information (ATIS)
- Public Transportation Management (APTS)
- Commercial Vehicle Operations (CVO)
- Emergency Management (EM)
- Maintenance and Construction Management (MC)
- Advanced Vehicle Safety Systems (AVSS)
- Archived Data Management (AD)

ITS FRAMEWORK (ARCHITECTURE)

ITS Framework

"a common framework for planning, defining, and *integrating* intelligent transportation systems."

IBI

Transit Fleet Management + Signal Priority + Traveller Information

History of the ITS Architecture for Canada

Expanded in areas:

- Non-Vehicular Safety
- Automated Enforcement
- Operations and Maintenance
- Environmental Monitoring
- Disaster Management
- Multi-modal
- Intermodal Freight

ITS Architecture for Canada

- Retain all of Version 1.1
- Align with U.S. Version 6.1
- Fully incorporate Border
 Information Flow Architecture

Also:

- Turbo Architecture for Canada
- Regional Architecture
 Development Guide

http://wwwapps.tc.gc.ca/innovation/its/eng/architecture/menu.htm

FRAMEWORK TO PLANS (REGIONAL ARCHITECTURE)

"A regional *framework* for ensuring *institutional agreement* and *technical integration* for the implementation of ITS projects in a particular region."

Process for Developing a Regional ITS Architecture

Regional ITS Architectures in Canada

- Translink Vancouver
- City of Calgary
- Region of York
- Transports Québec
- Ministry of Transportation of Ontario (Traveller Information)
- Ville de Montréal
- New Brunswick-Maine (Border)*
- Ontario-Québec Smart Corridor*
- Region of Peel*

^{*} currently under development

NEW DIRECTIONS

External Influences and Opportunities

- Technology Evolution
 - Smart Phones
 - Services
 - Apps
 - 'Google'; social media
 - INFOstructure (e.g. 3G,4G)
 - Smart Cars
- Public Expectations
- Alternate Fuels
- Environment

CTRF 46th Annual Conference

Government Funding

IBI Group

New Direction: Examples

- Traffic Data Collection
- Traveller Information
- Connected Vehicle
- Managed Motorways
- Electronic Vehicle Registration
- HOT Lanes
- Congestion Charging
- Electric Vehicles
- VMT vs. Gas Tax

Conventional Traffic Data Collection

- Public sector
- Capital (and maintenance) intensive
- Spot data
- Limited coverage
- Processing
 - Automatic Incident Detection
 - Travel Times
 - Congestion

Probe Traffic Data

ITS - The Practice and The Promise

- Opportunities
 - Private sector providers
 - Multiple technologies and data fusion
 - Cellphone tracking
 - GPS
 - GPS Fleet tracking
 - Network coverage
 - Travel times
 - Routes

The challenge: payment; service versus a capital expenditure

New Direction Examples

- Traffic Data Collection
- Traveller Information
- Connected Vehicle
- Managed Motorways
- Electronic Vehicle Registration
- HOT Lanes
- Congestion Charging
- Electric Vehicles
- VMT vs. Gas Tax

Conventional Delivery (Public Sector)

	Data (Inputs)	Delivery (Outputs)
Traffic	eventsroad conditionscongestiontravel time	dynamic signstelephone (IVR)website
Transit	schedulesfaresroutes	telephone (call centre)websites

Traveller Information

ITS - The Practice and The Promise

Traveller Information

Opportunities

- Government has a mandate public safety, network management, etc
- Public Information an important service
- Private sector can:
 - Move quickly
 - Help reduce costs

The challenge: defining a partnership between government and private sector

- Traffic Data Collection
- Traveller Information
- Connected Vehicle
- Managed Motorways
- Electronic Vehicle Registration
- HOT Lanes
- Congestion Charging
- Electric Vehicles
- VMT vs. Gas Tax

US DOT RITA

Connected Vehicle

Opportunity

- Vehicles are heavily instrumented:
 - Vehicle sensing
 - •GPS
 - Navigation
- Benefits from INFOstructure
- Opportunities for :
 - Improved safety
 - Better traveller information
 - Vehicle to roadside communications
 - Vehicle to vehicle communications
- Economic Development

Connected Vehicle

The Challenge:

- Coordination between government, business (auto sector) and infostructure
- Impact on local infrastructure

Considerations

- ITS will become increasingly important :
 - Technology evolution (INFOstructure)
 - Population expectations
 - Limitations on infrastructure
- Next generation of ITS technology has significant promise:
 - will require more innovative delivery options mechanism
 - e.g. PPP
 - Payment for a service versus ownership of equipment
- To realize the full value of ITS requires a Master Plan (Architecture):
 - Guides:
 - purchase of equipment
 - arrangements with agencies and private sector
 - construction of infrastructure

Kevin Bebenek

Director, IBI Group Member, ITS Canada (416) 596-1930

kbebenek@ibigroup.com