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Introduction 
 
Guo and Yang (2010) studied Pareto-improving congestion pricing 
cum revenue refunding (CPRR) schemes with heterogamous users, 
which make every road user better off as compared with the situation 
without congestion pricing. Their work adopted a fixed demand 
model. In this paper we study CPRR schemes with elastic demand. 
Practically, revenue refunding with elastic demand could be 
implemented in the form of the credit-based congestion pricing 
strategy (Kalmanje and Kockelman, 2004; Kockelman and Kalmanje, 
2005). Adopting an analytical approach, this study provides 
theoretical answers to the following questions: is it necessary to 
refund all the toll revenue to travelers for making everyone better off? 
If not, how much revenue reserve can be retained by the government, 
and otherwise could be used to cover the operation cost of CPRR 
schemes?  What are the main determinants of the amount of revenue 
reserve that would be generated? 
 
We tackle demand elasticity by treating auto trip demand between 
each origin-destination (OD) pair as a function of full trip price (or 
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generalized travel cost by car) in a conventional manner, which 
captures user heterogeneity in reservation price for making a auto trip 
and/or choice of driving frequency due to different travel budgets. 
Nevertheless, travelers are treated to be identical in their trade-off 
between money and travel time saving, this setback of identical value 
of time (VOT) is unavoidable in order to make our analysis 
analytically tractable. 
 
The remainder of the paper is organized as follows. We begin our 
analysis with the simplest case, a single OD pair connected by a 
single congested link, to illustrate our basic idea. We then extend our 
analysis to a general network traffic equilibrium model with elastic 
demand. Finally, some concluding remarks are presented. 
 
 
Single link network with elastic demand 
 
Consider a single road connecting a single OD pair. Simple as it is, 
this scenario could apply to a cordon-based road pricing scheme. For 
example, the cordon-based pricing scheme in Durham is essentially a 
charge on a single link. Let Q  denote the auto travel demand 

between the OD pair,  B Q  be the inverse demand function (the 

marginal benefit function), and  t Q  be the link travel time function. 

We assume that  B Q  is monotonically decreasing, and  t Q  is 

monotonically increasing. Let Q  be the equilibrium travel demand in 

the absence of toll charge, we have 

   B Q t Q   (1) 

Let Q  be the equilibrium travel demand when a toll (in equivalent 

time) 0u   is introduced, we have 

   B Q t Q u   (2) 

Because  B Q  is decreasing and  t Q  is increasing, we have 

Q Q   due to 0u  , thus a number,  Q Q , of trips are priced out 

of driving by the toll charge. 
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We need to make the flowing assumptions for our subsequent 
analyses to be valid. 
 
Assumption 1. A traveler’s pre-toll incentive to driving is not 
distorted by the future refund. 
 
Assumption 2. A traveler’s post-toll driving decision under pricing is 
not influenced by the refund. 
 
Assumption 1 states that a CBRR scheme to be implemented in the 
future does not distort travelers’ current travel decisions in the pre-
toll situation (choice of driving and driving frequency if driving). 
This assumption is made to ensure that the untolled equilibrium is 
always given by (1) regardless of the receipt of future refunds or the 
types of the future CPRR scheme. Assumption 2 states that a 
refunding scheme should not alter travelers’ decision of whether or 
not to drive or drive how much under pricing. This will ensure that 
the tolled equilibrium should be determined by the toll level as given 
by (2), which is independent of the post-toll refunds. We will show 
how these two assumptions will be fulfilled through a careful design 
of the CPRR schemes. 
 
We now design a revenue refunding scheme which can make every 
traveler better off compared with the “do-nothing” case. For easy 
presentation, travelers are ordered in their decreasing traveler benefit 
per auto trip, i.e. the q -th traveler’s trip benefit is  B q . We assume, 

for easy presentation, that each traveler, if choosing to drive, drives 
every day during the modeling period considered. In this case, the q -

th traveler is equivalently referred to as “trip q ” on a particular day. 

 
A traveler is said to be a revealed traveler if she travels by car in the 
absence of toll charge, and a latent traveler otherwise. Namely, the 

q -th traveler is revealed if q Q  , and is latent if q Q  . 

 
To ensure that Assumption 2 is always satisfied, we consider a 
uniform rebate per pre-toll revealed traveler no matter whether she 
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continues or stops driving after introduction of the CPRR scheme. Let 
  be such a uniform amount of refund to every pre-toll revealed 

traveler. With toll u  and refund  , each traveler solves a discrete 

choice problem of “to drive or not to drive”. For a revealed traveler 

q , q Q  , if she chooses to drive, her net benefit, denoted by  B̂ q , 

is 

      B̂ q B q t Q u     (3) 

and if she chooses not to drive, her net benefit is 

 B̂ q   (4) 

The traveler’s choice depends on the relative magnitude of the net 
benefit given by (3) and (4). Clearly, traveler q  will choose to drive 

if     B q t Q u  , and not to drive otherwise, which is as if there 

is no refund. In other words, the uniform refund does not alter the 
post-toll driving decision of the pre-toll revealed travelers. 
 
The above analysis only considers the pre-toll revealed travelers; 
while the pre-toll latent travelers have to be considered with the 
CPRR scheme. In this case, the refund level should be limited so that 
the pre-toll latent travelers are not induced to drive by the post-toll 
refunds. If a latent traveler chooses to drive under pricing, her net 
benefit is given by (3), assuming that she receives a share of refund. 
If she chooses to stay uninvolved, her net benefit is zero as she 
receives no refund. Thus, to keep the latent travelers uninvolved, the 
amount of refund,  , is required to satisfy 

     0B q t Q u     , for any q Q   

which is equivalent to 

    t Q u B q    , for any q Q   (5) 

 
Because  B q  is a decreasing function, the right-hand side of (5) 

increases with q , thus setting q Q   in (5) gives the following 

critical condition 
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    t Q u B Q      (6) 

In view of the equilibrium conditions (1) and (2), condition (6) can be 
rewritten as 

        t Q u t Q B Q B Q        (7) 

Condition (7) means that the amount of refund should not be larger 
than the increase in car trip disutility brought about by toll charge; 
otherwise some of the pre-toll latent travelers will be attracted to 
drive. 
 
Now we move on to look into the possibility of making every 
revealed traveler better off through revenue refunding. In the absence 

of toll charge, the net benefit,  B̂ q , of a revealed traveler q , 

q Q  , is 

     B̂ q B q B Q   , q Q   (8) 

With toll u  and refund  , the net benefit becomes 

      ,        ˆ
,   

B q B Q q Q
B q

Q q Q





    
  

 (9) 

Comparing (8) and (9), the change in net benefit is 

 
    
    

,        
ˆ

,  

B Q B Q q Q
B q

B q B Q Q q Q





     
   



 
 (10) 

We require that the change in net benefit of every revealed traveler is 

nonnegative. In view of the fact that    B q B Q  for  Q q Q    in 

eqn. (10), The critical condition for every revealed traveler being 
made better off is 

        B Q B Q t Q u t Q        (11) 

Condition (11) means that the amount of refund should not be less 
than the increase in auto trip disutility; otherwise some of the 
revealed travelers will be made worse off as compared with the “do-
nothing” case. 
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To sum up, for a refund   to keep the latent travelers uninvolved, 

condition (7) must hold, and to make every revealed traveler better 
off, condition (11) must hold. These two conditions together imply 
that the following per driver per pre-toll car trip based refunding 
scheme 

        B Q B Q t Q u t Q        (12) 

Consequently, in order to make sure that the refund does not change 
the auto trip demand and make every revealed traveler better off (or 
more rigorously, not worse off), we should refund uniformly to each 
revealed traveler an amount equal to the driving disutility increase 
brought about by the toll charge. We shall refer to the refunding 

scheme,    B Q B Q    , as the per pre-toll-trip based Pareto-

improving refunding scheme. 
 
To see the effect of the Pareto-improving refunding scheme on 

different groups of travelers, we substitute    B Q B Q     into 

(10) and obtain the following change in net benefit of each revealed 
traveler 

     
0,  

ˆ
,  

q Q
B q

B Q B q Q q Q

   
  

  (13) 

Clearly, with the Pareto-improving refunding scheme, the net benefits 
of those who continue driving after pricing do not change, and those 
who stop driving after pricing enjoy positive increase in their net 
benefits. 
 
It should be particularly mentioned here that the Pareto-improving 

revenue refunding scheme    B Q B Q     does not require any 

information on the demand function, because    B Q t Q u   and 

   B Q t Q   are the observed auto travel disutilities at equilibrium 

with and without toll charge, respectively. Thus our analysis applies 
to realistic situations where demand functions are unknown. 
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Budget constraint of refunding by toll revenue 
 
In this subsection we move on to check under what conditions the 

Pareto-improving refunding scheme    B Q B Q     is within the 

budget, i.e., the total amount of refund does not exceed the total toll 
revenue collected. Mathematically, we need 

Q uQ   (14) 

It should be noted that, because Q Q , condition (14) is not trivial. 

This can be easily seen from Figure 1. In this Figure, the area of 

rectangular abcd  represents the total toll revenue uQ , and the area 

of rectangular aefg  represents the total amount of refund Q  . Thus 

the budget constraint Q uQ   graphically means that the area aefg  

is smaller than the area abcd , which, as can be seen in the Figure, 
does not obviously hold. 
 
There is one more point here on the budget constraint. If a toll 
increases the social welfare, then we know that the total toll revenue 

collected (area abcd  in Figure 1) is larger than the consumer surplus 

loss (area of trapezoid aefd ). This means that, if we refund the 

revenue to each individual user according to her net benefit loss, then 
the total revenue is enough to make everyone better off. However, 

   B Q B Q     is a uniform rather than an individual-specific 

refunding scheme, which is required for keeping the traffic demand 
unchanged. Under the proposed uniform refunding scheme, the group 
of users who stop driving after pricing are indeed over refunded, and 

the total amount of refund (area aefg ) is larger than the consumer 

surplus loss (area aefd ). Thus, even if it is known that the social 

welfare is increased, it is still unclear whether the total amount of 

refund required (area aefg ) is larger or smaller than the total toll 

revenue (area abcd ). 
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Figure 1. Graphical representation of the budget constraint 

 
We shall show that the Pareto-improving refunding scheme does not 
violate the budget constraint as long as the toll level does not exceed 
the system optimal level (the marginal cost pricing toll) or it does not 
over depress the travel demand. To do so, denote    T Q t Q Q , 

which is the total system travel time,    d dM Q T Q Q , which is 

the marginal cost function, and let Q  be the demand level at system 

optimum (SO). We have 

   B Q M Q   (15) 

Equation (15) simply represents the well-known result that, at SO, the 
marginal benefit is equal to the marginal cost, or the inverse demand 
curve intersects the marginal cost curve at SO. It is also well-known 
that, when there is congestion effect, i.e.  t Q  increases with Q , it 
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holds that Q Q   , namely, the SO traffic volume is lower than the 

untolled equilibrium volume. 
 
Theorem 11. Assume that    T Q t Q Q  is strictly convex in Q . If 

the tolled demand level Q  meets Q Q Q    , then it holds that 

Q uQ   for the Pareto-improving refunding scheme 

   B Q B Q    . 

 
Theorem 1 states that, if the system travel time function is strictly 
convex, then the total toll revenue would not be used up by the 
Pareto-improving refunding scheme as long as the travel demand is 
not over depressed by the toll charge. Here “over depressed” means 
that the demand level under toll is even lower than the SO level, 
which corresponds to a toll higher than the SO toll level. Note that 

 T Q  is strictly convex as long as  t Q  is strictly increasing and 

convex. 
 
General networks with elastic demand 
 
In this section we extend our results to a general road network. A 
transportation network is considered as a fully-connected directed 
graph denoted as  ,G N A , consisting of a set of nodes N  and a set 

of links A . Denote the set of OD pairs as W , the travel demand for 

OD pair w W  as wd , the set of paths connecting OD pair w W  

as wR , the flow on path wr R  as rwf , the flow on link a A  as 

av , the toll charged on link a A  as au , and the link-path incidence 

matrix as  . Let d , f , v  and u  be the respective column vectors, 

then tv u  is the total toll revenue collected. Let   d  denote the 

feasible link flow set with demand 0d : 

                                                           
1 Due to space limit, proofs of all theorems are omitted. Full proofs are available from 
authors upon request. 
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  : , 0, ,
w

rw w
r R

f d w W


         
  

d v v f f  (16) 

Our analysis does not rely on separable link travel time functions, 
thus we consider general link travel time functions, with  at v  being 

the link travel time function of link a A , and  t v  being the link 

travel time vector. To guarantee the uniqueness of traffic equilibrium, 
we assume that  t v  is strictly monotonic. 

 
Our analysis relies on separable auto trip demand functions. Let 

 w wB d  be the inverse demand function (marginal benefit function) 

of OD pair w W . Let d  and v  be the equilibrium demand and 

link flow vectors in the absence of toll charge, d  and v  be the 
equilibrium demand and link flow vectors when a toll u  is 
implemented. Following the analysis in the single-link case, we know 

that an amount    w w w w wB d B d     evenly refunded to each pre-

toll revealed traveler of OD pair w W  would make every revealed 
traveler better off, while keep the tolled equilibrium demand 
unchanged. In vector form, this Pareto-improving refunding scheme 

is     Φ B d B d , and td Φ  is the total amount of refund. 

 

We shall check the budget constraint t td Φ v u  for the Pareto-

improving refunding scheme     Φ B d B d . We first need to 

decompose the two effects of congestion pricing in a general network, 
i.e., demand depression to optimize demand level, and user rerouting 
to optimize traffic assignment. To this end, we define the following 
optimal value function: 

 
 

 min T


 
v d

d v , 0d  (17) 

Clearly,   d  is the minimum total system travel time associated 

with demand 0d . With the assumption of strictly convex  T v , it 

can be shown that   d  is strictly convex and continuously 



Xiaolei Guo and Hai Yang 11

differentiable, and its gradient vector   d  is just the vector of OD 

marginal system cost at the corresponding SO with given demand d . 
 
Now we move on to examine the budget constraint of the Pareto-

improving CPRR scheme. We first consider the SO solution  , v d , 

which solves the following SO problem: 

 
   

0,
0

min  d
wd

w
w W

T B z z
 



  d v d
v  (18) 

The SO problem (18) in a minimization problem form is equivalent to 
maximizing the social welfare. With   d  defined by (17), it holds 

readily for the SO solution  , v d  that 

   T   v d  (19) 

Namely,  T v  is the minimum total system travel time under 

demand d . With (19), by rewriting the SO problem (18), we know 

that d  solves the following problem: 

   
0

0

min  d
wd

w
w W

B z z




   d
d  (20) 

The optimality condition of problem (20) gives 

       0
t     d B d d d  for any 0d  (21) 

where   d  is the gradient vector of   d  at d d , and 

      d B d  is the gradient vector of the objective function 

(20) at d d . Condition (21) means that, deviating from the SO 

demand d d  along any feasible direction  d d  will not further 

decrease the objective value (20) (not increase the social welfare). If 
we consider an interior SO solution 0 d , then condition (21) 
becomes 

     d B d  (22) 
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Condition (22) is the counterpart of condition (15) in a general 
network, which simply means that, at SO, the marginal social cost is 
equal to the marginal benefit for each OD pair (with positive 
demand). 
 
Theorem 2. Assume that  T v  is strictly convex in v . If a toll u  

realizes the SO solution  , v d  and  d d , then it holds 

t t d Φ u v  for the Pareto-improving refunding scheme 

    Φ B d B d . Furthermore, we have 

t t T     u v d Φ   (23) 

where      0T T   v d   

and              0
t

         d d B d d d  . 

 
Theorem 2 states that, under the assumption of strictly convex total 
system travel time function, the Pareto-improving CPRR scheme does 
not use up the total toll revenue if the toll system realizes the SO 
demand and link flows. Furthermore, the resulting revenue reserve 

consists of two parts, T   and   . Clearly,    T T  v d   is the 

efficiency loss caused by socially inefficient route choice at the 

untolled traffic equilibrium, associated with the given demand d . In 

other words, T   is the efficiency gain that can be achieved by the 

socially optimal route choice for given travel demand d . Thus T   
reflects the user rerouting effect of congestion pricing in a general 
network. On the other hand,    is determined by the demand levels 

d  and d , and the properties of the functions   d  and  B d . Thus 

   reflects the demand depression effect of road pricing. To sum up, 

the revenue reserve of an SO toll after refunding, i.e. the total SO toll 
revenue subtracted by the total amount of Pareto-improving refund, 
consist of two parts, one representing the socially optimal user 
rerouting effect and the other reflecting the socially optimal demand 
depression effect brought about by the pricing system. 
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For the single-link network studied in previous section, it is clear that 

0T  , i.e. road pricing has no user rerouting effect, thus the 

revenue reserve is just    resulting from demand depression. In 

contrast, it typically holds that 0T   in a general network. Because 

the revenue reserve is strictly larger than T  , the amount T   can be 
regarded as a benchmark for CPRR in general networks. That is, 

   T T  v d   justifies an amount of revenue that the 

government can retain after implementing revenue redistribution, 
which can be estimated by simple fixed-demand analysis. 
 
So far we have examined the Pareto-improving CPRR scheme for a 
toll pattern that achieves an SO solution (system optimal case). A 
strictly positive revenue reserve given in Theorem 2 implies that, for 

a second-best toll system that gives  ,v d  not too far away from the 

SO solution  , v d , the Pareto-improving refunding scheme can 

still be within the budget by continuity. However, unlike the single-
link case, where we can easily identify the condition that the demand 
should not be over-depressed, here the refunding budget constraint 
for a general network is somewhat complicated. We need to introduce 
the concept of a proper link toll pattern. 
 
Definition 1. A link toll pattern u  is said to be a proper toll 

pattern if the equilibrium flow and demand  ,v d  under the toll 

charge satisfies 

   T T T    v d   (24) 

       0
t

   d B d d d  (25) 

 

In the above definition, T  and T  ,    T T  v d   defined 

before, are the efficiency losses caused by route choice at the tolled 
and untolled equilibrium, respectively, thus condition (24) means 
that, compared with the untolled situation, a proper link toll pattern 
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should not increase the efficiency loss caused by route choice. Note 

that      d B d  is the gradient vector of the objective function 

(20) at d d , thus condition (25) states that, deviating from the 

tolled demand d d  along the direction  d d  will not decrease the 

objective value (20) (not increase the social welfare). With strict 
convexity assumption of the objective function (20), condition (25) 
guarantees that the social welfare at d d  is larger than that at 

d d . Intuitively, condition (25) means that the equilibrium demand 

d  under a proper toll pattern should be somewhere between d  and 
d . For the single-link case, a toll is proper if and only if it does not 

over depress the demand, which is stronger than that it increases the 
social welfare. 
 
Now we can give the following theorem as a generalization of 
Theorem 2. 
 
Theorem 3. Assume that  T v  is strictly convex in v . If a toll 

pattern u  is proper and gives equilibrium flow and demand  ,v d  

such that d d , then it holds that t td Φ u v  for the Pareto-

improving refunding scheme     Φ B d B d . Furthermore, we 

have 

 t t T T     u v d Φ   (26) 

where   0T T    and         0
t

      d d B d d d  . 

 
Theorem 3 generalizes Theorem 2 into any second-best pricing 
situation with a proper tolling system, i.e. the Pareto-improving 
refunding scheme does not use up the total toll revenue if the toll 
system is proper, and the revenue reserve consists of two parts, 

 T T   and  , the former representing the user rerouting effect 

and the latter reflecting the demand depression effect of the pricing 
system. Similar to the interpretation of Theorem 2, the term 
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 T T   justifies an amount of revenue that the government can 

retain after conducting revenue refunding, which can be estimated by 
simple fixed-demand analysis. 
 
Conclusions 
 
We proposed a Pareto-improving CPRR scheme with elastic demand, 
which refunds to every pre-toll revealed traveler an amount of money 
equal to the travel disutility increase due to congestion pricing. The 
refunding scheme has no impact on travelers’ post-toll trip-making 
decision, and thus does not alter the tolled equilibrium demand. The 
budget constraint of the Pareto-improving CPRR scheme was 
checked. For the single link case, under mild technical conditions, it 
was proved that the total toll revenue would not be used up by the 
Pareto-improving refunding scheme as long as the travel demand is 
not over depressed by the toll charge. For general networks, where 
congestion pricing has both demand depression and user rerouting 
effects, the Pareto-improving CPRR scheme does not exhaust the 
total toll revenue as long as the toll system is proper by our definition 
and the resulting revenue reserve consists of two parts pertaining to 
the two effects of congestion pricing. Because the user rerouting 
effect of congestion pricing involves fixed-demand analysis only, the 
corresponding part of revenue reserve is practically easy to estimate. 
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