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Introduction 

Nowadays urban planners are attempting to improve attraction of 
public transportation. The most important reason that impedes 
passengers from choosing public transportation as their trip mode is 
waiting time in transit’s system. According to this fact need of 
decreasing system’s waiting time and transfer coordination is 
obvious.  

Transit waiting time has two major components: boarding waiting 
time in the first station of the trip and transfer waiting time in the 
middle stations. Transfer waiting time causes more inconvenience for 
users as it occurs in the middle of the trip. The first component 
depends mostly on the headway of the lines and will be reduced by 
decreasing the headways while the second part varies with several 
parameters and is more difficult to deal with.  

The primary purpose of this research is to create a model to decrease 
the transfer waiting time of a system with preset headways but to 
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make the model more flexible, we let headways vary in a small range. 
We put boarding waiting time in the model to minimize both waiting 
times simultaneously.  

In section 2, we reviewed some previous researches on this subject. 
Section 3 is the representation of the models. In section 4 we 
described the solution method and section 5 combines unreal and real 
life examples to show efficiency of the models. Finally conclusions 
are explained in section 6. 

Literature review 

Recent studies in transfer optimization have been reviewed and a 
summary is explained. Ceder et al. (2000) presented a MIP model to 
maximize the number of simultaneous arrivals of buses from different 
lines at transfer stations. In this model headways are not preset but 
they should vary between a maximum and minimum value. The 
decision variable is the departure time of i-th vehicle in line k (xik) 
and the difference between x(i+1)k  and xik  should be in the range 
[Hmaxk , Hmink ] . The travel time of each vehicle is assumed to be 
deterministic and predictable. Small networks may be solved directly 
with this model but to solve large scale ones heuristic approaches are 
used. 

Quak (2003) changed the objective function of Ceder’s model to 
minimize passengers’ waiting time and solved his model by some 
changes in Ceder’s heuristic model. 

Ting (1997) presented two models for transfer coordination. He 
aimed to minimize cost of system by optimizing headway and dwell 
time. In his first model travel times are considered to be deterministic 
and analytical methods are used to solve the model while in the 
second model travel times are probabilistic and heuristic methods are 
applied to solve it.  

Fleurent et al (2004) introduced three concepts of transfer waiting 
time: minimum, ideal and maximum transfer waiting time. They 
made a composite quality index for synchronization and entered it in 
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the cost function as well as other costs. Finally they solved the model 
using a Lagrangean relaxation and heuristic mechanisms. 

Cevallos and Zhao (2006) attempted to shift the existing timetable. 
Their model used ridership data at all transfer stations and considered 
randomness of bus arrivals at stations. They solved a network with 80 
lines and 255 transfer stations based on genetic algorithm. The results 
showed 12.1% reduction in the transfer waiting time. 

Chung and Shalaby (2008) presented an optimization model to 
modify the existing timetable of the transit network and exerted extra 
dwell time in transfer stations. They assumed that buses’ arrival time 
at transfer stations followed a log-normal distribution. This model 
was solved using genetic algorithm approach. 

Shafahi and Khani (2010) proposed two IP models to minimize 
passengers’ transfer waiting time in the network. The variable of the 
first model is the start time of the first vehicle of each line from the 
first station. In the second model the stop time of each vehicle at 
transfer stations is also considered. Shafahi and Khani solved their 
model by CPLEX package for small networks and Genetic Algorithm 
for large networks.  

Mollanejad (2010) proposed a MIP model to minimize the total 
waiting time of passengers in transfer nodes of the transit network. 
The variable of this model is the headway of the lines which is 
assumed to be uneven. He solved his model using CPLEX package 
for small networks and simulated annealing algorithm for large 
networks. 

This research attempts to deal with waiting time and presents a 
mathematical formulation and an efficient solution procedure for 
transit networks of every size. 

Waiting time optimization model 

The proposed models for minimizing waiting time in a public 
transportation system are two mixed integer non-linear programs 
(MINLP). Objective function of both models is sum of transfer and 
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non-transfer waiting time in the system. Decision variables in the first 
model are headway and departure time of the first vehicle of each line 
from the first station. In the second model which is formulated by 
expanding the first model, an extra stop time is considered for lines in 
transfer stations, so there would be more successful transfers. 

Model assumptions 

Some assumptions are made to make the models simpler. The main 
ones are as below: 

• The transit network and fleet size are given. 
• Headway of each line is uniform during the planning 

duration and varies in a small determined range so that fleet 
size does not change. 

• Travel time in each section is given and considered to be 
constant. 

• Travel demand and passengers’ chosen routes are given and 
are independent of systems’ characteristics. 

•  A primary stop time is considered for vehicles in each 
transfer station, so passengers can get off and on the 
vehicles. In the second model this value is the output of the 
model. 

• Passengers’ transfer time between lines in each transfer 
station is a given constant value. This time is the minimum 
possible time that passengers can transfer between vehicles. 

• In each transfer station, transferring passengers select the 
first vehicle of the target line for transferring in order to 
reduce their transfer waiting time. 

• Passengers’ average boarding waiting time for each line is 
assumed to be half of the headway of that line. 
 

Variables and input parameters 

The input parameters of the models are: 

R: set of all lines in the transit network; i, j and k are line indices, 
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S: set of all transfer stations in the transit network; s is the transfer 
station index, 

Sj: set of all transfer stations in transit network in line j, 

h0i: Current headway of line i (in minutes), 

tis: Travel time of vehicles from starting point of line i to transfer 
station s, 

dtis: Stopping time of vehicles in line i at transfer station s, 

tpijs : Number of passengers transferring from line i to line j at 
transfer station s during the planning duration, 

pis: Total number of passengers in line i not transferring at transfer 
station s during the planning duration (staying aboard), 

ttijs : required transfer time for passengers transferring from line i 
to line j at transfer station s. This value is the time needed for a 
passenger to walk from the vehicle in line i to the vehicle in line j. 

pi: Total passengers of line i including transfer and non-transfer 
passengers during the planning duration. 

Decision variables in the first proposed model are: 

xk = Departure time of the first vehicle of line i from its first 
station, 

hk = Adjusted headway of line k; 

Other variables are: 

WTijs  = minimum waiting time of passengers transferring from 
line i to line j in transfer station s, 

AWtijs  = average waiting time of passengers transferring from line 
i to line j in transfer station s, 
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gij = greatest common divisor of adjusted headway hi and hj, 

y1ijs  , y2ijs  = integer variables, 
wij
s  = binary variable, 

Z: objective function; sum of both transfer and non-transfer 
waiting time in all origins and transfer stations, 
Problem formulation 

Consider passengers of line i in their origin, we assumed an average 
boarding waiting time equal to hi/2 for them. So the total boarding 
waiting time of passengers of line i during planning duration would 
be equal to pihi/2 and the total boarding waiting time in the network 
would be ∑ pihi/2 i .  

Now let us consider passengers transferring from line i to line j, their 
transfer waiting time would be equal to (Shafahi and Khani, 2010): 

(1) 

WTijs = �xj + tjs + dtjs + y2ijshj� – �xi + tis + ttijs + y1ijshi� ,  

 ∀i, jϵR ,∀sϵS       
 

In this equation (xi + tis + ttijs ) is the arrival time of the passengers’ 
of the first vehicle of line i and (xj + tjs + dtjs) is the departure time 
of  the first vehicle of line j. If the transfer passengers from line i 
reach the first vehicle of line j the difference between these two 
sentences would be their transfer waiting time; however, we should 
consider two cases here: first, the passengers of the first vehicle of 
line i may miss their transfer to the first vehicle of line j; under this 
condition, they should wait for the next vehicle of line j. To calculate 
their waiting time under this circumstance, we added y2ijshj  to the 
equation. Second, this transfer waiting time may exceed hi.  As we 
are calculating minimum transfer waiting time, we should consider 
passengers of all of the vehicles from line i that have arrived during 
this period, thus, we added y1ijshi  to the model. 
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y1ijs  and y2ijs  are calculated to gain the minimum waiting time. If 
headway of line i and j were not equal, the minimum transfer waiting 
time from line i to line j would not be equal for all the vehicles of line 
i, so an average waiting time is calculated as below (Shafahi and 
Khani,2010): 

(2)                 ∀i, jϵR ,∀sϵS   AWTijs = WTijs + (hj
− gij)/2 ,   
  Transfer waiting time for all the passengers changing their line from 
i to j in the transfer station s would be AWTijstpijs  during planning 
duration. By summing this value for all possible ij-s in transfer station 
s we can calculate total transfer waiting time in transfer passenger s 
and by summing this value for all transfer stations in the network we 
will calculate the total transfer waiting time in the network. 

Now we can propose the first model: 

Minimize z = ��� tpijsAWTijs + �
pihi

2
ijis

      (3) 

WTijs = �xj + tjs + dtjs + y2ijs gij� − �xi + tis + ttijs + y1ijs gij� ,       

∀i, jϵR ,∀sϵS   (4) 
(5)   ∀i, jϵR ,∀sϵS          WTijs ≥ 0, 

(6)   ∀i, jϵR ,∀sϵS     WTijs < gij, 

(7)   ∀i, jϵR ,∀sϵS  AWTijs = WTijs + (hj − gij/2), 
(8)   ∀i, jϵR ,∀sϵS                    AWTijs ≤ hj, 
(9) ∀kϵR                                xk < hk,  

(10) ∀ kϵR                                          xk ≥ 0, 
(11) ∀kϵR                        minhk ≤ hk ≤ max hk, 
(12) ∀i, jϵR ,∀sϵS y1ijs : integer, 
(13) ∀i, jϵR ,∀sϵS     y2ijs : integer, 
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The objective function is the sum of both transfer and non-transfer 
waiting time in the network. Constraint 4 calculates the minimum 
waiting time. Constraint 5 and 6 show the upper and lower bound of 
the minimum waiting time, respectively. Constraint 7 is the definition 
of average waiting time. Constraint 8 is the upper bound of average 
waiting time. Constraint 9 guarantees the practicality of the model. 
Constraint 11 shows the range in which headway can change to gain 
the minimum waiting time without causing changes in the frequency. 
To reduce the solving time an upper bound is considered for y1ijs  and 
y2ijs  as below (Shafahi and Khani, 2010): 

y1ijs . up = ��tjs − tis� + �
hihj
gij

�� /gij (14) 

y2ijs . up = ��tjs − tis� + �
hihj
gij

�� /gij (15) 
 

We can also include constraints 16 and 17. As a result, one of the 
y1ijs  or y2ijs  would be zero and the other one would have a non-zero 
value. 

(16) ∀i, jϵR , sϵS y1ijs ≤ M(Wij
s) , 

(17) ∀i, jϵR , sϵS y2ijs ≤ M(1 − Wij
s) , 

 
As an expansion of the first model we proposed a second model. In 
the first model we considered a constant stop time for vehicles in the 
transfer station, in the second model we added the extra stop time 
(edtjs) to the decision variables of the model. Therefore, passengers 
who miss their transfer with a small gap would have more successful 
transfers; However, this extra waiting time should not exceed an 
upper bound, because the aboard passengers travel time would 
increase and this decreases their tendency toward using public 
transportation; Moreover, next vehicle would arrive and this extra 
stop time would be useless.  
By entering the new variable to the model some changes are made. 
First, the definition of minimum transfer waiting time will change as 
below: 
WTijs = �xj + t′j

s + dtjs + edtjs + y2ijsgij�
− �xi + t′i

s + ttijs + y1ijs gij� ,  (18) 
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∀i, jϵR ,∀sϵS 
In which t′js  is the travel time from the first station to the transfer 
station s and is calculated as below: 
t′js = tjs + � edtjn

nϵSbj
s

 , ∀jϵR , sϵS (19) 

where Sbjs  is the set of all transfer stations in the transit network 
placed in line i before station s. 
Upper bounds that are considered for extra waiting time in each 
transfer station and also total extra waiting time in the network are 
shown in constraint 20 , 21 respectively.  
edtjs ≤ max_edtjs , ∀jϵR , sϵS (20) 
� edtjs

sϵSj

≤ max_tedtjs ,                   ∀jϵR , sϵS (21) 

Finally we should add the extra travel time of the non-transfer aboard 
passengers when the vehicle stops for a longer time in transfer 
stations. This time is equal to pjsedtjs, therefore, the total extra travel 
time in all transfer stations is ∑ ∑ pjsedtjs.js  
The proposed model is represented here: 
Minimize z = ��� tpijsAWTijs

jis

+ �
pihi

2
i

+ �� pjsedtjs                   
js

 
(22) 

Constraint 18-19 
Constraint 5-13 
Constraint 20-21 

Genetic Algorithm Approach 
Complexity of the model is mostly caused by calculating integer 
variables   y1ijs , y2ijs  and also  gij . Considering run time and lack of 
memory, models cannot be solved by common solver packages. On 
the ground of this fact, we needed a heuristic approach to solve the 
model. A genetic algorithm is created to solve even very large 
networks such as urban metropolitans. This approach is briefly 
described here. 
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The decision variables of the first model are departure time of the 
first vehicle of each line from the first station (xk) and headway of 
each line (hk), so chromosomes include these two variables as their 
genes in the GA. Fitness function is the total waiting time in the 
network which is the same as the first model’s objective function.  xk 
are defined as double variables which can change in the range [0, hk] 
and hk are defined as integer variables that vary in the range [hmink , 
hmaxk ]. The first population is created randomly. To create the 
population of next generations we used linear crossover and mutation 
operators. Through the linear crossover value of the same genes of 
two chromosomes are replaced, so the value of genes are still in their 
range. As crossover operation may result in local optimums, we 
should exert mutation to search the feasible region completely. 
Through mutation random values are added to the genes which are 
chosen randomly. This may cause gene values to exceed their bounds. 
To prevent this we divided genes’ values to their range and replaced 
them with the remainder of this division to assure that the values are 
in the feasible region. The other process in the genetic algorithm is 
the selection of the chromosomes for the next generation. The 
common selection processes are Roulette wheel and Elitistism. We 
used both of the procedures in this research.  
The final step is to determine termination criteria of the algorithm. 
The three criteria that we used in this research are: 

• The best solution does not change after a given number of 
iterations. 

• The difference between the best and worst solutions in a 
population is less than a given value, i.e., 1%. 

• A maximum number of iterations is reached. 

To run the algorithm we need to determine value of algorithm’s 
parameters. One of these parameters is the ratio of crossover-
mutation, we gained that by running the algorithm with different 
ratios for constant number of iterations and investigate the 
convergence in each of the runs and finally we chose the best rate. 
The other parameter was number of chromosomes in each generation. 
We found the best population size following the same methodology 
as was described for the crossover-mutation ratio. Optimal number of 
iteration is also determined considering run time and convergence.  
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To solve the second model we also used the same genetic algorithm 
with some changes. We should add extra stop time of vehicles in 
transfer stations to the variables. As all the lines do not pass all the 
transfer stations, we only considered those i and s for which pis  is 
defined. We replaced this variable in the algorithm with  yi .   yi  is 
defined as integer variables which can change in a specified range. 
Therefore, the vector formed the genes of the chromosomes includes 
(xi, hi, yi). The fitness function is the same as objective function of 
the second model. The other procedures are the same as the first 
model.  

A Real Case Study: City Of Mashhad 

Mashhad real life network is used to evaluate the efficiency of model 
and genetic algorithm approach. Mashhad network is a large network 
with 139 two ways (278 one way) bus lines and 3618 bus stops of 
which 841 ones are transfer stations. Figure 1 shows Mashhad 
network. To estimate the value of the model parameters we 
performed transit assignment using Optimal Strategy in TransCAD 
software. Then, we applied genetic algorithm to solve the model of 
this network. Headways of these lines vary between 2 and 165. We 
considered a ±10% changes in the headways’ value in order not to 
change the fleet size. Also the upper bound of the edtis was defined as 
below:  

edtis. up = min �4,
hi
4
� (23) 

 

We estimated GA parameters as described before.  We ran the GA for 
crossover mutation ratios of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 with 
2000 iterations, the optimal crossover mutation ratio was 0.5 
considering the GA convergence, then we ran GA with this optimal 
crossover mutation ratio with population sizes of 10, 20, 30 and the 
optimal population size was found 20 regarding run time. We also 
considered 5000 iterations for termination.     
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Figure 1- Mashhad City bus network 

Finally 3 scenarios were solved using GA. The results are shown in 
table 1. 

Table 1  
Mashhad transit network scheduling results 

 scenario Objective function 
value 

Objective function 
improvement 

No planning 731350 0% 
First model 640058 12.5% 

Second 
model 635063 13.2% 

 

By the current condition of the network, waiting time in the whole 
network during the planning duration is 731350 minutes.  By exerting 
the new condition that is the result of the first model the waiting time 
would increase to 640058 minutes, this means 12.5% improvement in 
the system which is equal to 91292 minutes saving time for 
passengers. Finally by solving the second model the objective 
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function value would reduce to 635063 minutes. The improvement is 
13.16% or 96287 minutes. 
Comparing two proposed models, the second model is 0.8% more 
efficient than the first one; however, we should notice that these 
results are not the optimal solution. 
The trend of the first and second models’ objective function 
improvement versus iterations is shown in figure 2 and 3 respectively.  
Finally we can conclude that both models are efficient in reducing 
waiting time of the passengers in the transit network and GA is an 
appropriate approach to solve the large scale networks as it does not 
have limitations for the number of variables and constraints. 
  

 
Figure 2- Trend of first model’s objective function improvement by 

number of iterations for Mashhad city transit network using the 
genetic algorithm 
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Figure 3- Trend of second model’s objective function improvement 
by number of iterations for Mashhad city transit network using the 

genetic algorithm 

Conclusion 

In this paper we represented two models to minimize transfer and 
non-transfer waiting time in a transit network simultaneously. 
According to the high number of variables using a heuristic approach 
to solve the model was necessary and we verified the results with the 
results of Shafahi and Khani (2010) solution. Finally, we created a 
genetic algorithm and applied it for a large real life transit network. 
We made the following conclusions: 

• By a small change in headways, there would be a 
reasonable reduction in the network waiting time; it is 
noticeable that we assumed uniform headway for each 
transit line.  

• Improvement of the second model in comparing with the 
first model shows that extra stop time in the transfer station 
causes more successful transfers and reduces waiting time 
in the system. 

• More significant origins and transfer stations can be 
weighted in the model based on their numbr of passengers. 

• Both of the proposed models reduce the waiting time 
significantly. 
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• Finally for ease of the modeling in this research it is 
assumed that demand of each line is fixed (independent of 
its characteristics), as an extension of this research, the 
influence of the changed parameters on demand can be 
studied. Also stochastic travel time can be considered 
instead of constant one. Other heuristic approaches or a 
combination of them can be used to solve the model. 
Moreover, in this model half of the headway of each line is 
considered as its average boarding waiting time, it can be 
replaced with better values.   
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