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1.  INTRODUCTION 
 
In the literature, two of the most popular ways to deal with urban 
congestion that have been suggested are congestion pricing and 
giving priority to public transportation. Congestion pricing has been 
analyzed in a very large number of settings but, a particular feature of 
the results we would like to stress is that in most cases, if congestion 
pricing is implemented, travelers surplus will decrease since the full 
price consumers pay (time costs plus the tax) is larger than the time 
costs they pay without congestion pricing. Thus, total social welfare 
would be increased because tax collection dominates the travelers 
surplus reduction, making revenue recycling an important issue if 
political support is to be raised. 
 
On the other hand, many authors have studied the optimal design of 
scheduled public transport services (Jansson, 1984), seeking 
frequencies, vehicle sizes, and number and spacing of bus stops that 
minimize total costs. Although depending on the specific setting, the 
main result here is that, when one takes into consideration the 
resources supplied by operators (energy, crew, maintenance, 
administration, infrastructure, rolling stock and so on) and users 
(waiting, access and in-vehicle times), the efficient cost minimizing 
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service requires subsidies. This happens because the sum of 
operators’ and users’ costs yields a total cost that grows less than 
proportionally with the demand, implying scale economies; this is 
sometimes known as the Mohring effect (for a review see e.g. Jara-
Díaz and Gschwender, 2003). 
 
Now, as it is evident, people have a choice between using a car or 
public transportation, and these two modes share road capacity and 
thus interact with each other. This happens directly on the road, when 
vehicles are in motion, or when passengers are boarding and alighting 
in bus stops. In other words, buses delay cars and car delay buses. Yet, 
as important as this may seem in practice, it has been very uncommon 
in the literature to consider congestion pricing and optimization of 
scheduled public transportation in a unique, joint model. Thus, we 
believe there is an important void that needs to be filled in order to 
better understand the full implications of different measures targeted 
at dealing with congestion in cities, such as congestion pricing, transit 
subsidies or dedicated bus lanes. Importantly as well, this should help 
to better assess what may be the level of public and political support 
for each of these policies. 
 
In this paper we propose a simple tractable optimization model that: (i) 
allows users to choose between car, public transportation or an 
outside option (biking) through a discrete choice model (ii) consider 
congestion interactions between cars and buses, including the effects 
of bus stops (iii) allow for optimization of frequency, vehicle size, 
spacing between stops and the percentage to be dedicated to bus lanes. 
We choose the best parameter values possible and numerically solve 
different optimization problems, each of which corresponds to a 
combination of alternative urban transport policies. Analyzing the 
results we can have first-idea of what would be the outcomes of these 
different policies, such as congestion pricing, allowing for transit 
subsidies (with or without a constraint on subsidies being covered 
with revenues from congestion pricing), dedicating a percentage of 
capacity only for buses, or any combination of these.1 

                                                 
1 Some papers that do consider some of the features we are interested in are Mohring 
(1972), Small (1983), Viton (1983). 
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2.  THE MODEL 
 
We consider a road of infinite length with a capacity of Q 
vehicles/hour, where Y commuters per kilometer and hour would like 
to travel l kms (in the same direction). We model a representative 
kilometer of the road. All travel commuters choose one of three 
modes –car, bus or bicycle– in a utility maximization framework. For 
the two motorized modes we consider congestion externalities caused 
both by their interaction while in motion, as well as congestion 
caused by the existence of bus stops. The variables that the planner 
can (potentially) adjust in order to maximize social welfare are: bus 
frequency, f [bus/h] and bus capacity, K [passengers/bus]; number of 
equidistant bus stops per kilometer, p; the congestion toll for cars Pa 
[$/km]; the bus fare Pb [$/trip]; and the percentage of road capacity 
dedicated exclusively to bus services, η. Obviously, as these variables 
change, utility levels are affected and, consequently, so will be the 
modal split. The possible policies we consider are: congestion pricing, 
transit subsidies and dedicated bus lanes. Then, the scenarios we 
analyze are made of combinations of these policies and, therefore, 
some of the variables may not be available to the planner  in some of 
the scenarios (for example, in some of the scenarios we will not allow 
the planner to use dedicated bus lanes). 
  
We can now move unto the specific functional forms we consider. 
Let us start by the modal utilities. The utility a commuter perceives, 
for traveling by automobile (a), bus (b) or cycling (c) are respectively: 
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In each case, the utility of using a mode corresponds to the benefits of 
undertaking the trip, given here by the daily income Inc –which 
without loss of generality we normalize to zero–plus a modal constant 
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which we will discuss further momentarily, minus generalized costs. 
These generalized costs include car tolls and bus fares, Pa and Pb; and 
in vehicle travel times, ta , tb and tc, which are multiplied by the 
Subjective Value of Time, SVT, and the travel distance l. In (1) we 
also consider operational cost per kilometer, ca, and parking costs, g, 
which are shared by the occupants of a car (occ). In (2) on the other 
hand, we also consider (average) waiting time, given by , and 
(average) walking time to and from the bus-stop, given by 

f2/1

ACpν2/1 , where ACν  [km/h] is walking speed. ACγ  and Eγ  are 
the ratios between the in-vehicle SVT and waiting SVT and walking 
SVT respectively.  
 
Something that is key to capture is the fact that people, even if facing 
the exact same alternatives, do different things. This users’ 
heterogeneity can be addressed in a number of ways; here, we have 
chosen a simpler framework which, perhaps at the expense of some 
realism, increases tractability: we assume that all commuters share 
the same value of time and income but differ in their valuation of 
some other attributes such as safety, comfort, social status and so on. 
The level of these other attributes are modal specific and captured by 
Bi in equations (1)-(3). In this way θ is an idiosyncratic term that 
varies across the population and that accounts for the importance each 
person assigns to the other attributes. We assume that , 
that θ is uniformly distributed in [0;1] and, without further loss of 
generality, that Bc = 0; in other words, that ceteris paribus, people 
prefer the car over the bus because, for example, of higher comfort or 
status, but not everyone with the same intensity. Note though, that the 
order of the Bs may change if one consider different attributes. For 
example, B may be the amount of pollutants per person each mode 
emits (which would reverse the order between modes) and θ may be 
green consciousness.  With these assumptions and equations (1) to (3), 
it is easy to show that under mild conditions, there exist threshold 
values of θ characterized by , which define a modal 
split where people with value of θ between 0 and  choose cycling, 
people with value of θ between  and  choose bus, while the 
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remainder choose car. Thus, the number of people using each mode is 
given by: 

( )a
a YY θ−= 1                                      (4) 

( )baYY θθ −=b                                   (5) 

( )0−=−− bYYY θ= bac YY                          (6) 
 
where the values of the thresholds are obtained by searching for the 
indifferent types, i.e. by equating the utilities. This process 
straightforwardly leads to: 
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Note that, by replacing the threshold values (7) and (8) in equations 
(4) to (6), one obtains the number of consumers per mode as 
functions of the variables that the planner chooses, such as the 
congestion toll for cars Pa and the bus fare Pb, or the frequency f of 
the transit system.  
 
We can now move on to the central issue of in-vehicle travel time 
functions, i.e. ,  and . Ideally, one would like to use functions 
that capture, as close to reality as possible, the effects that the 
distance between stops, number and size of buses and cars, and 
number of lanes has on the average speed of cars and buses. Yet, we 
are not aware of any model that proposes this in a manner that can be 
interacted with the microeconomic framework and, therefore, we 
have opted for choosing simple linear forms, which capture the 
effects we desire yet may be unrealistic if second order effects are 
strong. Suppose first that buses and cars are physically separated, 
such that buses can use a proportion η of the capacity Q, while cars 
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use (1-η). The time that a car takes to travel one kilometer will be 
given by: 
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where the figure in the numerator corresponds to the flow of cars –
since l is the distance of each trip, and occ is the number of people 
per car– and thus show congestion effects. α and β are parameters. 
Obviously, since in this case buses and cars are not really interacting 
with each other, there are no cross-congestion effects.   
 
On the other hand, the time it takes a bus to travel one kilometer 
when it has exclusive use of a proportion η of the road capacity is: 
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On the right hand side of (10), the first term in brackets represent 
travel time while the vehicle is in motion: buses, like cars, can suffer 
from congestion. The flow of buses is multiplied by an equivalence 
factor b that attempts to capture the differences in size and 
maneuverability between cars and buses, factor that has usually been 
assumed to be constant (e.g. Mohring 1979). Here, however, we let 
this parameter be given by b(K)= K/100+1, where K is the capacity 
of the bus, which nicely captures the fact that a bus is equivalent to 
something between 1.5 and 3 cars, depending on its size. In the 
second term in (10), tsb is the average time that a passenger takes to 
board and alight the bus, thus this term captures delays for bus stops 
operations. Finally, the third term captures the fact that, in order to 
load and unload the bus at a bus stop, the driver has to slow down the 
bus before stopping and then speed up the vehicle, which causes 
further delays at a rate of p seconds per stop.  
 
Let us consider now mixed-traffic conditions. Here, we would like to 
capture not only that buses and cars causes congestion to each other, 
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but also that bus stop operations can cause delays to car users. As 
mentioned above, we are not aware of a travel time function that, 
grounded on real data, delivers the effects that the distance between 
stops, number, size and load factor of buses has on average speed of 
cars and buses. Hence what we do, is to simply consider that a 
fraction of the extra-time that a bus requires for bus top operations is 
also incurred by cars. We set this fraction to one half (since it may be 
possible for the car to surpass a bus), and thus obtain the travel time 
for cars for mixed-traffic conditions as: 
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Note that in the first term, the capacity is now shared (there is no η) 
and a bus is treated as b cars. Buses on the other hand, still use time 
for boarding-alighting operations and acceleration from bus stops, but 
now they also suffer from congestion caused by cars. Their travel 
time function in mixed-traffic conditions is then: 
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Finally, the cost of the bus system (in dollars per hour) is given by 

 where the term in brackets represents 
operational cost per bus and hour, which are larger for larger buses.  

( bbbb ftKccC 10 += )

 
3.  OBJETIVE FUNCTION, SCENARIOS AND PARAMETER 
VALUES 
 
We maximize a social welfare function given by the (un-weighted) 
sum of consumer surplus plus government revenues minus 
operational transit costs. What changes from one scenario to the next 
are the policies that the planner chooses to –or can– implement. 
These policies are congestion pricing, transit subsidies and dedicated 
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bus lanes and, therefore, the scenarios we analyze –which as we show 
below correspond to different constraints imposed on the 
optimization problem– are made of combinations of these policies. 
The common objective function –per hour social welfare–is:  
 

l
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Y
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abbb +−+=                    (13) 

 
Where CS is consumer surplus –easily obtainable as the sum of 
individual utilities– the second term on the left hand side is (per hour) 
transit revenue, the third term is transit cost, and the fourth term is 
congestion pricing revenue. We can now move to the description of 
the different scenarios we analyze. In all cases, the planner 
maximizes (13) and must consider at least three technical constraints: 
First, there is the constraint of minimal bus size, given by 

. Yet, since having idle capacity only decreases the value 
of the objective function, buses will always be chosen to meet 
demand so the constraint binds. On the other hand, the number of 
commuters in each mode cannot be negative. Thus, the planner must 
consider: 

1−≥ flYK b
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We can now move to the description of the eight different scenarios 
we analyze. The first four consider mixed-traffic conditions –thus we 
use equations (9) and (10) for travel times there– while the last four 
consider that the percentage of exclusive capacity for buses, η, is also 
optimized –thus we use equations (11) and (12) there. The scenarios 
are as follows: 
 
Scenario 1: Self-financing transit, no congestion pricing, mixed-
traffic 
 
The first scenario we consider corresponds to the current situation in 
many cities around the world and therefore we refer to it as our base 
case. It features self-financing for the bus system (through fares only), 
absence of congestion pricing and road capacity shared by buses and 
cars. The problem solved by the planner in this scenario is then: 
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Scenario 2: Transit subsidies, no congestion pricing, mixed-traffic 
 
In this second case we consider a transit subsidization policy, which 
here takes the form of no longer asking the transit fare to cover transit 
costs: the problem is as in scenario (1)  but we no longer consider the 
constraint . 

bbb CYP ≥
  
Scenario 3: Transit subsidies, congestion pricing, mixed-traffic 
 
The third scenario, in addition to transit subsidies, considers 
congestion pricing which, according to the model above, consists of a 
per-kilometer charge. Given the policies at hand, this scenario will 
lead to the maximal social welfare level for mixed-traffic conditions 
as now we no longer consider the restriction Pa = 0.  
 
Scenario 4: Transit subsidies paid for by congestion pricing revenues, 
mixed-traffic 
 
What we intend to explore here, by comparison with scenario 3 is 
whether optimal transit subsidies can be covered by optimal 
congestion pricing plus optimal bus fare. In other words, whether 
imposing a urban transport sector self-financing constraint leads to 
welfare losses or not. Thus, the optimization problem now consider a 
constraint of the form 

bbba
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The next four scenarios, 5 to 8, are similar to scenarios 1 through 4 
but now we consider cases where buses circulate on dedicated lanes 
that use a share η of the total capacity. We optimize η  but allow it to 
take the values 1/3 or 2/3 only, that is, the decision is whether to give 
one or two lanes exclusively for buses. Given that in these cases there 
is on extra optimization variable, one could think that compared one 
to one –for example scenario 2 vs. scenario 6–, welfare will be larger 
in the latter. This is not directly true however because the travel time 
functions are now different: now we should use equations (11) and 
(12).  
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As it is evident, the optimization model we propose to solve requires 
a large number of parameters. We have chosen to use parameters that 
represent reality as close as possible, in this case, they represent a 
morning-peak in Santiago, Chile, where monetary values correspond 
to 2006 US dollars. We omit the parameter values for space reasons, 
but area available upon request.  
 
4.  SIMULATION RESULTS 
 
All eight scenarios were solved as optimization problems using the 
software Wolfram Mathematica; numerical results are omitted for 
space reasons but are available upon request. Figure 1 below 
summarizes the results of each scenario in terms of the value 
achieved of Consumer Surplus and Total Social Welfare, with 
respecto to the base case (which features no subsidies, no congestion 
pricing and no dedicated bus lanes). The idea with this is to jointly 
assess the social goodness of each policy and the level of public 
support that each policy may find. For example, a policy that 
produces and increase in social welfare but a decrease in consumer 
surplus is a policy that may find stronger opposition unless 
government revenues are recycled in some clear and known way.  
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Figure 1: Differences in Consumer Surplus and Total Social 
Welfare (US$/km/hr) with respect to Scenario 1 
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Effects of Transit Subsidization 
 
Subsidizing transit is a policy that works in that it increases total 
social welfare and consumer surplus. It also changes the modal split 
importantly: the bus takes all former bicycle users and some car users 
as well. It is, however, a policy quite expensive for the government 
that, actually, lead to negative prices. In terms of service variables, 
when buses are analyzed in isolation, transit subsidies should increase 
frequency and bus size  (see e.g. Jara-Díaz and Gschwender, 2003). 
Both of this happen here, yet the change in the optimal bus size is 
marginal, from 104 to 107 passengers. More sizeable is the change in 
frequency, from 27 to 35 buses/hour, which reduces waiting times. 
Since there are now less people using cars, circulation speeds increase 
for both modes, although not by much (0.5 km/hour). The optimal 
spacing between bus stops do not change.  
 
An important result is that transit subsidization does not seem to be 
necessary if either congestion pricing or dedicated bus lanes are in 
place: in scenario 3 where both congestion pricing and subsidies are 
allowed, the bus system (optimally) generate positive profits, 
implying that subsidies are not needed. In this sense, scenario 3 can 
be taken as representing a congestion pricing policy alone. On the 
other hand, in scenario 5, where dedicates bus lanes are used, the 
transit system self-finances as well, so that the transit budget 
constraint is not binding. That is why when we formally allow for 
subsidies in addition to exclusive lanes, in scenario 6, results do not 
change.  
 
How subsidization does alone compared to other policies also in 
isolation? Figure 1 shows that subsidies produce the smallest increase 
in social welfare as compared to congestion pricing alone (scenario 3) 
or dedicated bus lanes alone (scenario 5). In turn, transit subsidization 
is the policy that produces the largest consumer surplus –obviously 
due to large negative prices– and, therefore, could be the one with the 
largest public support. Clearly, if positive prices were imposed (not 
shown) both social welfare and consumer surplus would decrease. 
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Effects of Congestion Pricing 
 
The scenarios that consider congestion pricing are scenarios 3, 4, 7 
and 8. The optimal congestion tax is calculated at 0.18 US$/km. The 
first obvious and expected result of congestion pricing is that it 
induces a change in the modal split, moving commuters from cars to 
the transit system. It actually moves more people from cars to bus 
than transit subsidies. Congestion pricing induces: (i) larger speeds –
due to decreased car usage– but these are not sizeable (about 
1km/hour), (ii) larger bus frequency comparable to subsidization, but 
without increasing the fleet as much. Bus size and distance between 
bus stops are again not notably changed.  
 
Importantly, the use of a congestion pricing policy induces a large 
increase in the bus fare which now is not only positive (recall it was 
negative under subsidization) but it generate revenues that more than 
cover transit costs. It is because of this that Scenarios 3 and 4, and 7 
and 8 are identical: the question of whether congestion pricing 
revenues are enough to cover transit subsidies is irrelevant if 
subsidies are not needed at the optimal situation! Note, however, that 
the financial result of the transit system would be negative again if 
one considers a smaller total demand (not shown), i.e. subsidies 
would be required for smaller demand levels. However, the clear 
effect of congestion pricing on reducing importantly the size of transit 
subsidies remains and, if all scenarios are simulated again but with 
half the total demand, it is always the case that optimal congestion 
pricing revenues cover optimal transit subsidies; hence, even with 
half the demand, Scenarios 3 and 4, and 7 and 8 would coincide.  
 
Figure 1 shows some important other insights. First, it can be noted 
that congestion pricing applied over the base case (from Scenario 1 to 
3) produces an increase in social welfare but, at the same time, a 
decrease in consumer surplus. Thus, the usual result that consumer 
surplus decreases with congestion pricing remains. Note that in the 
light of the well know Downs Thomson Paradox (Mogridge, 1990), 
this result may seem strange. According to this paradox, if car users 
are induced to switch to public transport, then this would imply 
benefits in generalized costs for everyone, as there will be less 
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congestion for cars while the transit system would be more frequent. 
There are two issues here that explain the differences: first, that in our 
case we allow the bus system to be congestible, both in mixed traffic 
conditions and separate circulation; second, that the Downs 
Thompson paradox looks at costs while here we are taking into 
account differences in preferences through consumer surplus.  
 
These reductions in consumer surplus together with increases in 
social welfare imply that it may be difficult, politically, to pursue 
congestion pricing policies without earmarking the revenues and 
having the public to believe that revenue recycling will indeed occur. 
It should also be recalled that our analysis considers that toll 
collection costs are zero, which  is obviously not true in reality.  
 
Mixed Traffic vs Dedicated lanes 
 
What one expects from a policy that assigns part of road capacity to 
dedicated bus lanes is that bus speed should increase considerably, 
given that buses are no longer trapped in car congestion. Car speed 
may increase as well, because cars may now avoid conflict with buses 
(including bus stops operations), but decreased capacity for cars may 
have the opposite effect.  
 
The first important result to note when looking at dedicated bus lanes 
policies is that the optimal number of lanes to be assigned to buses is 
one in all four cases (scenarios 5 to 8). Comparing scenarios 1 and 5 
in order to see what would achieve the bus lanes policy lanes on its 
own, we see that indeed buses can now go more than three times 
faster, while cars decrease their speed by two km/hour. This large 
change in speeds induces a sizeable increase in bus frequency (about 
70%) while decreasing the bus size from 100 to 80 people. It is 
interesting to note that the increase in frequency does not require an 
increase in bus fleet: the fleet needed is actually 80% smaller than in 
the base case.  Higher bus speeds also induce a larger separation 
between bus stops, something that neither transit subsidies nor 
congestion pricing made. All in all, dedicated bus lanes induce 
sizeable changes in service levels, something that under mixed traffic 
conditions do not happen. As a result of all these changes, bus 
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demand increases importantly with respect to mixed-traffic conditions. 
The optimal bus fare is ten cents higher than in the base case which, 
together with decreased costs lead to a positive financial result for the 
transit system.  
 
Now, despite the fact that bus fare increased with respect to the base 
case and that car speed decreased, dedicated bus lanes actually 
increase consumer surplus, as can be seen in Figure 1, which may 
lead to think that it is a policy that would count with public support. 
This happen because transit service levels (with the exception of 
access time) improved so strongly, that they dominate the other 
effects. Furthermore, consumer surplus increases in a context in 
which the financial result of the transit system is positive, implying 
an even larger increase in social welfare: in fact, dedicated lanes is 
the policy that, by itself, achieves the largest increase of social 
welfare, and by a large amount. Note that these profits cannot be used 
to decrease the fare as this would be welfare reducing: instead they 
can be earmarked and recycled to push even further the political 
support for the policy. Hence implementing dedicated  bus lanes 
seems to be a policy that, from a social welfare point of view, can 
improve any existent situation.  
 
Congestion Pricing vs. Dedicated Lanes 
 
Mohring (1979) argued that bus speed was one of the most important 
attributes of the system and that as such, it should be one the central 
objectives of planners, if they want to increase bus patronage. He 
hypothesized that dedicated bus lanes may be a tool equivalent to 
congestion pricing in achieving a change in modal split. To study this 
the scenarios one has to compare are scenarios 3 (pure congestion 
pricing in mixed-traffic conditions) and scenario 5, where the only 
policy is dedicated bus lanes (there is no congestion tax and buses 
have to self-finance). Figure 1 gives us a clear picture: dedicated bus 
lanes achieve both larger consumer surplus and larger total social 
welfare, and in both cases differences are large. It also induces a 
larger bus patronage. The implications of all this are that bus lanes 
may find less opposition from the public than a congestion pricing 
policy, while achieving a larger positive impact.  
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5.  SUMMARY AND CONCLUSIONS 
 
People have a choice between using a car or public transportation, 
and these two modes share road capacity and thus interact with each 
other. Yet, as important as this may seem in practice, it has been very 
uncommon in the literature to consider congestion pricing and 
optimization of scheduled public transportation in a unique, joint 
model. This paper deals exactly with this issue, by proposing a simple 
tractable model that incorporate demand and engineering interactions. 
Numerical results of the model clearly indicate that this type of 
approach may be fruitful to better understand the full implications of 
different urban transport policies.  
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