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Introduction 

The primary objective of this study is to investigate the 
spatial relationships between construction aggregate shipments and 
the per axle payload weights of trucks as it pertains to highway 
deterioration, applied in this case to the State of Washington.  
Because the productive life of the pavement is directly affected by 
frequent, heavy aggregates shipments traveling long distances, this 
study focuses on the relationship between pavement damage and per 
axle payload weights. Many studies have examined the relationship 
between transportation cost and construction unit productivity but 
there’s minimal information available pertaining to the relationship 
between per axle payload weights, shipment distances and highway 
deterioration.   

This study utilizes data from a survey investigating the 
transportation and operational characteristics of Washington’s mined 
products conducted under the six-year comprehensive research and 
implementation project Strategic Freight Transportation Analysis 
(SFTA) at Washington State University. A previous study 
investigated the transportation characteristics of mined aggregates 
using a spatial autoregressive model, where a significant positive 
relationship between payload weights and shipment distances was 
established.  This paper expands by assessing the “contribution” of 
aggregates hauling trucks to pavement deterioration using per axle 
loads by truck configurations.  Results showed again a positive 
relationship between road impact and distance hauled, supporting the 
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Department of Transportation and private aggregate mining firms in 
utilizing gravel sources close to job site, even if they lack economies 
of scale.    
 
Transportation of Mining/Mineral Survey  
 

The aggregates industry is highly influenced by 
transportation efficiency in terms of high cost of shipments.  
Therefore, the proximity of mine site location to the construction site 
or any other end use location is crucial.  That actual cost of 
transportation may explain the high correlation between mine and 
construction site locations.  Despite the low value per ton 
characteristic, an aggregate is heavy, which makes truck 
transportation very costly but necessary.   

According to the Transportation of Mining/Mineral Survey 
(1) the majority of aggregate is hauled within close distances from its 
production origin.  Particularly, about 80% of total production (78% 
of mine sites) was hauled within 20 miles or less from the mine 
location.  While the survey included 12 separate types of mined 
minerals, only construction aggregates (sand and gravel, rock/stone) 
related information was used in this study.    
 
Truck – Pavement Relationships 
 

Highway infrastructure protection has always been a major 
consideration for changes in truck size and axle weight policy 
decisions.  The productive life cycle of highway pavement depends 
on different factors including pavement structure, quality of the 
construction materials, weather conditions, number of axles, the 
distance between axles, the speed of a vehicle, and tire pressure.  
However, vehicle-specific factors such as spacing between axles, 
vehicle suspension, and tire pressure are not examined in this study 
since they represent relatively less importance for estimating 
pavement damage magnitude than per axle loads (Comprehensive 
Truck Size and Weight Study) (2).   

The distribution of the payload weight over axles or axle 
groups influences the magnitude of pavement deterioration since 
more axle groups result in less force imposed on the pavement 
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(Casavant, K., and J. C. Lenzi) (3).  The relationship between truck 
axle load and deterioration level can be investigated with the 
following damage function (Tolliver) (4): 

Ng
β

τ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

where, [0,1]g∈  denotes an index of damage or 

deterioration (g = 1 indicates maximum damage), N is the number of 
passes per axle group at a specified weight and configuration (18,000 
pound/single axle), τ is the number of axle passes at which the section 
of pavement reaches failure, and β is the rate of deterioration.   

Further, in the literature review section, the influence of the 
transportation efficiency on the aggregates industry is discussed.  
This dual relationship leads to an increasing number of overloaded 
hauling trucks on highways.  According to the well established 
relationship between heavy weights and pavement deterioration, this 
directly affects the durability of the highway system.   

Figure 1 depicts the general relationship between the trucks’ 
per axle weight and the damage function described above, where the 
damage increases at a much higher rate than the per axle load.   
 
Figure 1. Pavement Damage and Vehicle Axle Weight 
 

 
  
Source: Casavant, K., and J. C. Lenzi.  
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To ascertain the relationship between increasing haulage 

distances and highway deterioration, the consideration of the 
following scenarios is useful: (1) truck configurations are changed, 
allowing more axle groups for heavier loads, thus preserving the same 
per axle load, (2) truck configurations are changed, but not 
proportionally to the increase in the payload weights, thus increasing 
per axle weights.  Under the second scenario, the incremental effect 
on pavement deterioration will sharply increase with an increasing 
per axle load.  Generally, a fourth power relationship is considered as 
a measure for pavement damage resulting from increasing per axle 
loads (1).  For example, as a result of a 100% increase in per axle 
weight, the impact on the pavement will increase by a factor of 16.    
 
Literature Review 
 

Prior studies focusing on mine operations have focused on 
issues related to route selection, as with Peter Berck 2005 (5).  Berck 
presents a least cost route selection model for aggregates hauling as a 
part of constructors’ cost minimization strategy, suggesting that the 
opening of the new quarry would change the aggregates 
transportation pattern.  As a result of the new quarry opening the 
study found no significant increase in the demand for construction 
aggregates as well as a decrease in some environmental externalities 
(emissions reduction).  Another public cost consideration may be the 
deterioration of road networks used for aggregates hauling, which 
involves investigation of data on per axle payload weights and/or the 
distance of the mined commodities shipments.  This also follows with 
the desire of construction contractors attempting to increase 
productivity by maximizing the payload weights of the truck 
shipments (Schexnayder, et. all. 1999) (6).   

Additionally, because the shipments represent a major 
component of construction costs payload weights may even exceed 
allowable measures, thus creating a strong relationship between the 
distance and the payload weights (Chronis, 1987) (7).  Chronis 1991 
(8), also suggests that overloading trucks by 20% may lead to a 
decrease in per ton cost of aggregate, since labor costs will not 
change and the fuel price is relatively unaffected.  This assumption 
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might not hold with recent fuel price advances, as well as it does not 
consider corresponding public cost, externalities like highway 
damage or environmental impacts.  In this aspect, many prior 
research efforts mention the relationship between aggregate hauling 
and construction unit productivity, and there is only minimal 
information available to understand the relationship with hauling 
distances as they pertain to highways deterioration (Day 1991) (9).    
 
Data 
 

The precise geographic site information for each mine was 
obtained from the Washington Department of Natural Resources, 
Division of Geology and Earth Resources.  The county and state 
highway system GIS files were downloaded from the WSDOT 
GeoData Distribution Catalog. According to the survey results 35% 
of the aggregates production was shipped within 5 miles of the 
production origin, 21% were transported to distances within 6 to 10 
miles, 24% - within 11 to 20 miles, 13% - from 21 to 40 miles, 4% - 
from 41 to 100 miles, and only a small proportion of the production 
was hauled to longer distances.  The number of axles typically on the 
ground varies depending on the truck type.  According to the survey 
results, the number of axles (typically on the ground) for trucks 
leaving mining facilities ranges from 2 to 6, with the average of 3.4 
and mode of 3 axles.  Trailer (if used) axles on the ground ranged 
from 2 up to 7, with an average and mode of 3.  Total number of 
axles for truck or tractor ranges from 2 to 9, with average of 3.6 axles.  
With the average of 3, the total number of axles on 1st trailer varies 
from 2 to 5. 
 
Methodology   
 
Spatial Autocorrelation 
 

An evaluation of the mining industry data received from the 
Transportation of Mining/Mineral Survey showed substantial 
variation across Washington’s regions.  Naturally, spatial non-
stationarity is involved in any process which takes place over real 
geographical locations (A. Unwin, D. Unwin, 1998) (10).  In other 
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words, the process under investigation might not be constant over the 
entire study area.  In this aspect, the global statistics will fail to 
properly represent relationships between processes, especially when 
translated into a local investigation of those processes.  Therefore, 
because the transportation characteristics of the mining/mineral 
industry involve data containing geographic location information, in 
most cases the data was expected to have spatial dependence, or 
spatial autocorrelation, which is the weaker form of spatial 
dependence.    

For example, in the western regions of the state, due to the 
availability of many construction projects (demand) or favorable 
weather conditions, a larger percentage of mines can be found in 
operation.  This results in relatively heavier payload shipments than 
in the eastern part of the state (1). 

Consequently, spatial dependence in the data would mean 
that most of the classical estimation procedures and methods are 
inappropriate for this analysis.     

The geographic distribution of aggregates mines throughout 
the state is relatively evenly dispersed.  However, upon closer 
investigation of these mine locations in relation to the road network 
and highly urbanized areas, one may find local clustering (Figure 2).   
This is partially explained by a high concentration of highways, 
homes and office construction in highly urbanized areas (B. Finnie, J. 
Peet 2003) (11). 
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Figure 2. Aggregates mines in relation to Washington State highways 
by annual production volume 

In addition to the visual inspection of the point pattern, 
exploratory data analysis using GIS and GeoDa showed systematic 
patterns in the spatial distribution of the variables such as payload 
weights and annual production volumes.   

The wide array of studies in the field of spatial econometrics 
represents diverse approaches for addressing spatial autocorrelation in 
the data.  However, a search of the economic literature did not bring 
favorable results on investigating spatial autocorrelation representing 
aggregates mining industry data. 

Many authors state that spatial autocorrelation exists as a 
systematic spatial variation in values across space, where high values 
at one location are associated with high values at neighboring 
locations, creating positive autocorrelation.  Whereas high and low 
value patterns between neighboring areas represent negative 
autocorrelation (Upton and Fingleton, 1985) (12).    

The number of local and global spatial statistics is available 
to test for complete spatial randomness of the data depending on its 
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form.  One of the oldest indicators of global spatial autocorrelation is 
Moran’s I (Moran, 1950) (13), which, when applied to polygon or 
point data, compares the value of a specific variable at any one 
location with that of all other locations and emphasizes similarities 
over space (Fotheringham et. al. 2002) (14).  

The equation for calculating Moran’s I statistic is given as:  
_
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 where N is the number of point 
observations (locations), Xi is the 
value of the variable at location i, Xj 

is the value of the variable at location j, X is the mean of the 
variable, and Wij is a spatial weight matrix applied to the comparison 
between locations i and j.  Calculations throughout the study area 
resulted in a value of Moran’s I = 0.1115 for payload weights, and 
Moran’s I = 0.16 for per axle loads.  

Global Moran’s I values indicate statistically significant 
spatial autocorrelation in the regression residuals, which then requires 
addressing the issue of spatial autocorrelation.  This violates the 
assumption that the values of the observations in each sample are 
independent.  Positive spatial autocorrelation can occur if samples are 
taken from geographically close locations.  

In the case of the mining industry, the global forms of spatial 
statistics might not be representative of the situation in any particular 
region of the state and may hide some interesting and important local 
variations of the characteristics that the study investigates (14).   

The localized version of Moran’s I statistic (LISA) has the 
following form: 

where N is the number of observations, 
Xi is the observed value of the variable 
X at location i, Xj is the value of the 

variable at location j, X is the mean of 
the variable, and Wij is a spatial weight matrix, which represents the 
strength of the linkage between i and j locations (Anselin L. 1995) 
(15). 
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Spatial Weights Matrices 
 

The potential interaction between two spatial units can be 
expressed by the spatial weight matrix W. Contiguity based spatial 
matrices can be used for the polygon data, i.e. involving areas such as 
counties, regions, states or even countries.  Distance based weights 
can be appropriate for point data, as well as for polygon data if 
centroids are calculated.  Each type in turn can be different according 
to specified order of contiguity, distance band or number of 
neighbors.  Although, each type of spatial weights can be formed 
based on specific situations or nature of the spatial data, however, 
there is no precise agreement about the type of weight matrix to be 
employed for spatial analysis (Anselin, 1988) (16).  In the spatial N 
by N weight matrix, each element wij = 1 when i and j are neighbors 
and wij = 0 otherwise, the diagonal elements of which are set to zero.  
Rows of the N by N weight matrix are standardized such 

that

ijs
ij

ijj

w
w

w
=
∑ .  Resulting weights matrix is no longer symmetric, 

which ensures averaging neighboring values (Anselin and Bera 1998) 
(17).  

For the contiguity type weight matrices “neighbors” can be 
classified spatial units that share a border.  Anselin, 2005 (18) & (17) 
provide details on higher order contiguity weight matrices – queen, 
rook.  Distance based matrices can be based on either the distance 
between i and j locations of observations or number of neighbor 
observations.  Where, in the first case “neighbors” for one location 
can be considered all points/locations that are within the specified 
distance from that point.  While for the “number of nearest neighbor” 
approach, number of points/neighbors should be specified in order to 
be considered as neighbors.  For example, if for some specific 
purposes 4 nearest neighbors approach is adopted, the weights matrix 
will consider only 4 nearest points for each of the point in the study 
area.  Weights with number of nearest neighbors (KNN) approach 
standardize the number of neighbors, which assumes that an equal 
number of neighbors are more important than the distance between 
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neighbors.  This study employed threshold distance based weighting 
matrix.   
 
Spatial Error Model 
 

One reason for spatial dependence in an estimated model 
could arise as a result of mine site location near to highly urbanized 
regions of the study area.  Urbanization is usually positively related 
with aggregates consumption. Thus, mine sites located near to 
densely populated areas might operate with higher annual production 
levels, than those located in less populated regions.  Similar local 
demand characteristics could partially explain production levels or 
shipment’s payload weights, as well as shipment distances.   

As mentioned earlier, spatial autocorrelation is a problem for 
regression models when the error terms introduce some spatial pattern 
in which areas or points close together display similar values than 
areas or points further away.  Widely used specification is a spatial 
autoregressive process in the error terms.  The spatial error model 
assumes the following linear regression:  
 
y = Xβ + ε  with  ε = λWε + υ, 
 
where λ is the spatial autoregressive coefficient for the error lag Wε, 
and υ is homoskedastic error term.    

Spatial regression model selection decision was made 
according to Luc Anselin’s comprehensive guide to GeoDa statistical 
software – “Exploring Spatial Data with GeoDaTM: A Workbook” 
(18). Regression analysis started with Ordinary Least Squares 
regression; further, Lagrange Multiplier (LM) diagnostics provided 
basis for the spatial autoregressive model selection.  Both LM-Error 
and LM-Lag tests showed statistically significant results, which led to 
examination of their Robust form statistics.  At this step Robust LM-
Error statistic showed statistically significant results, accordingly the 
spatial error model was chosen for next stage of the regression 
analysis.  
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Results & Conclusions 
 

The regression results reveal a significant positive 
relationship between per axle payload weights (dependent variable) 
and all the distance categories.  The OLS regression output and 
diagnostics for spatial dependence for the distance based weight 
matrix are summarized in Table 1 and 2, respectively.  
 
Table 1. OLS Regression Output  
Shipment 
Distances  (in 
miles) 

Coefficient Standard 
Error t-Statistic Probability

Constant -0.4619785 0.2663406 -1.73454 0.0839149
0-5      mile 4.560459 0.4055854 11.24414 0.0000000
6-10    mile 6.523676 0.4386133 14.87341 0.0000000
11-20   mile 4.611568 0.4568085 10.09519 0.0000000
21-40   mile 5.030289 0.6482578 7.759705 0.0000000
41-100 mile 5.009317 1.083914 4.621509 0.0000058
Adjusted R2 .55   
Log Likelihood -540.689   
AIC1 1093.3   
SC2 1115.36   
*Number of observations = 288 
 
Table 2. Diagnostics for Spatial Dependencies 

Test MI/DF Value Probability

Moran's I (error) 0.16 N/A N/A
Lagrange Multiplier (error) 1 22.169176 0.0000025

                                                 
1 AIC – Akaike Info Criterion 
2 SC – Schwarz Criterion 
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Regression diagnostics (Moran's I, LM-Error tests) disclose 

considerable non-normality and a high level of spatial 
autocorrelation, which could be spillovers from mining operations 
from adjacent districts being transmitted through economic activities.   

Next, in Table 3, output for the spatial error model is 
represented. The estimates for the autoregressive parameter of the 
error process are represented by lambda.   
 
Table 3. Spatial Error Regression Output 
Shipment 
Distances (in 
miles) 

Coefficient Standard 
Error t-Statistic Probability

Constant -0.421304 0.2787575-1.511364 0.1306959
0-5      mile 4.428516 0.3805101 11.63837 0.0000000
6-10    mile 6.129497 0.4216894 14.53557 0.0000000
11-20   mile 4.714083 0.4418261 10.66954 0.0000000
21-40   mile 5.597888 0.6265768 8.934082 0.0000000
41-100 mile 5.421976 1.018583 5.323058 0.0000000
Lambda 0.3726214 0.078964 4.718877 0.0000024
Pseudo R2 0.59   
Log Likelihood -531.317   
AIC 1074.64   
SC 1096.61   
*Number of observations 288.  
 

In the spatial autoregressive specifications, appropriate 
measures of the goodness of fit are log-likelihood, AIC and SC tests.  
Compared to the OLS diagnostics, all three are improved in this 
specification.  Particularly, log-likelihood is increased from -540.689 
(for OLS) to -531.317, AIC is decreased from 1093.3 (for OLS) to 
1074.64, and SC is decreased from 1115.36 (for OLS) to 1096.61.  
The spatial autoregressive coefficient (λ) is estimated as 0. 37 and is 
highly statistically significant.   

The spatial error regression results (Table 3) represent a 
considerable increase (1.7 tons) in per axle payload weight from the 
0-5 category to the 6-10 category for the shipment distances.  For the 
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next distance category, per axle payload weights are reduced by 1.4 
tons, possibly indicating a change in truck configurations (more 
axles) to accommodate longer distances.3  The change from the mile 
category 10-20 to a longer distance category, 21-40 miles, resulted in 
a nearly 1 ton increase in per axle payload weight4.  Due to the high 
cost of aggregates transportation, many mining firms fully or over 
utilize payload weight capacities for truck shipments, thus eliminating 
public costs of highway system deterioration.  According to the well 
established per axle weight and pavement damage relationship, 
incremental changes in per axle payload weights resulting from 
longer shipment distances clearly suggest that longer haulage 
increases the magnitude of pavement deterioration.  This direct 
relationship between road impact and the distance hauled emphasizes 
the importance of the proximity of mine sites to different end users.  
Because of this, state agencies such as the Department of Natural 
Resources, which have exclusive authority to endorse reclamation 
plans and mining permits, should consider facilitating the process of 
issuing permits.  This will ensure that the aggregates are provided in 
timely manner to newly opened construction sites.  Consequently, this 
will also prevent the haulage of gravel from longer distances, 
therefore reducing the level of road deterioration. 

Furthermore, the relationship also suggests the importance 
of closely monitoring the selection of the specific truck configuration 
in accordance to the payload weights and shipment distances.  This 
will partially ensure the durability of the highway system as it 
pertains to the transportation of mining industry production.      
 
 

 

 

                                                 
3 Also, this can partially be explained by local, more restrictive regulations on truck 
size and weight (in addition to the state level regulation), which eventually leads to an 
increase in transportation cost per-ton-mile.   
4 The 41-100 mile category represents only 4% of mining firms’ annual production 
shipments and, therefore, is less useful for interpretation.   
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