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Introduction  
 
Turning decision by vehicles, at a signalized intersection in a univer-
sity campus, is not only dependent on the vehicle’s attributes but also 
on pedestrian and bicycle attributes. Depending on the geometric 
design, pedestrians may be screened/protected by the presence of 
cyclists, because in most cases turning vehicles first yield to cyclists 
then pedestrians. For example, a bicycle path may have an impact on 
the turning decision of vehicles. The explanatory attributes may also 
have different extents of impact on the left- and right-turning 
vehicles. This study considers the intersection of Boulevard de 
Maisonneuve Ouest and Rue Mackay in George Williams Campus of 
Concordia University (Montreal, Canada) as a case study. There are 
two conflict zones at such intersection for the left- and right-turning 
vehicles. Left-turning vehicles interfere with pedestrians and cyclists 
at the North-East crossing (Maisonneuve–Mackay), while right-
turning vehicles interfere with pedestrians at the West-South crossing 
(Mackay–Maisonneuve).  
 
This study estimates left- and right-turning vehicles’ critical gap 
acceptance at the selected intersection with a stochastic distribution 
model. Traffic video data were collected from 10:00 am to 5:00 pm 
from July to October 2010. A total of 638 traffic data records of left-
turning vehicles and 392 records of right-turning vehicles were 
recorded during the 30-hour period. 
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Methodology  
 

Vehicles’ turning maneuvers at the conflict zone of the signalized 
intersection are modeled in a two-step process: 1) estimation of the 
critical gap acceptance (CGA) of the turning vehicles, and 2) 
determination of the impact of road user’s attributes (e.g. pedestrian 
speed, bicycle speed, vehicles’ distance from conflicting zone, 
pedestrians in group, etc.) and traffic conditions (e.g. traffic jam) on 
the vehicle’s turning decision. 
 
Critical Gap Acceptance (CGA) 
The gap acceptance means the amount of time that a vehicle concedes 
to pedestrian and/or bicycles passing in front of it. A lag is defined as 
the time needed for a vehicle to reach the conflict zone. A total of 606 
of 638 left-turning vehicles accepted the gap, while a very negligible 
number (32) of left-turning vehicles accept the lag during the left-
turning maneuver. Out of 392 right-turning vehicles, only 14 accepted 
the lag. This study ignores the lag data of left- and right-turning 
vehicles.  
 
As different vehicles accept different gaps, the estimation of mean 
value of gap acceptance with randomness for each vehicle is herein 
suggested. For a critical gap acceptance (CGA), the mean value can 
be determined as the minimum gap duration accepted by a vehicle in 
a specific situation (Miller, 1971). The deterministic value of CGA 
can be identified by measuring the mean of the gap acceptance distri-
bution without considering the randomness and heterogeneity (Taylor 
and Mahmassani, 1998; Wu et al., 2004). As the gap-acceptance 
distribution has randomness and heterogeneity, a stochastic mean of 
gap acceptance per vehicle was determined as the critical gap 
acceptance.  
 
Several research works (Abernethy, 2004; Alhajyaseen et al., 2011) 
suggest that gap acceptance probability distributions can be adjusted 
and fitted by cumulative Weibull distribution. This study fits the 
probability distribution of gap acceptance by 49 continuous distri-
bution functions. Goodness-of-fit of gap acceptance distributions, 
compatibility of a random sample with a theoretical probability 
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distribution function is determined by Kolmogorov-Smirnov (K-S), 
Anderson Darling (A-D) and Chi-square tests. K-S test quantifies a 
distance between the empirical and normal (theoretical) CDF. K-S 

test statistic equals to max!!!!! ! !! − !!!
!
, !
!
− ! !!  (Chakra-

varti et al., 1967). ! !!  is the normal cumulative distribution of gap 
acceptance distribution being tested. A-D test is a modification of the 
K-S test and gives more weight to the tails than the K-S test does. The 
K-S test is distribution free in the sense that the critical values do not 
depend on the specific distribution being tested. The A-D test is a 
more sensitive test, which uses the specific distribution in calculating 
critical values. The A-D test can be defined as    !! = −! − !, where 
! = !!!!

!
ln! !! + ln 1 − ! !!!!!!!

!!!  (Chakravarti et al., 
1967). Initially, Chi-square goodness-of-fit test is used because it can 
be applied to any univariate distribution. However, the chi-square test 
is restricted to discrete distributions. K-S test and A-D test can be 
applied to determine the goodness-of-fit of continuous distributions. 
As the distribution of gap acceptance by each vehicle is continuous, 
the goodness-of-fit of this distribution can better be understood by K-
S test and A-D test.  
  
Factors Contributing to Turning Decision Making Process  
The simulation of a vehicle’s turning maneuvers at the signalized 
intersection is complicated as it is subjected to complex inter-
relationships among pedestrian, vehicle, bicycle and traffic charac-
teristics. Several factors can influence a vehicle’s turning maneuvers 
at signalized intersection such as vehicle speed, vehicle in queue, gap 
between bicycles/pedestrians allowed vehicles to cross through, 
pedestrian distance from curb, number of pedestrians in the 
interference zone, pedestrian speed, and behavior and number of 
preceding pedestrian(s). Bicycle attributes (cyclists’ speed, flow and 
platooning) may have beneficial circumstances for pedestrians during 
road crossing decision making process. Turning vehicles, waiting in 
the queue or at signal tail of green phase, may not give the right-of-
way to pedestrians in order to avoid waiting for next green phase of 
signal cycle.  
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The contribution of these variables to vehicle’s turning decision can 
be solved by different gap acceptance models. Ben-Akiva and 
Lerman (1985) and Cassidy et al. (1995) proposed a logit gap 
acceptance model, while Mahmassani and Sheffi (1981) and Madanat 
et al. (1994) proposed the use of a probit gap acceptance model. This 
study applies back-propagation neural network (BPN) for gap 
acceptance without hypothesizing in advance a certain relationship 
between dependent and explanatory variables. This study applies 
BPN based on the mathematical derivation developed by Freeman 
and Skapura (1991) where the outputs are binary value of critical gap 
acceptance (1) or rejection (0). In the second step, this study applies 
binomial logit model (BNL) assuming in advance a certain relation-
ship between critical gap acceptance and explanatory variables. 
 
Back-Propagation Neural Network (BPN). The fundamental concept 
of BPN networks for a two-phase propagate-adapt cycle is that input 
variables are applied as a stimulus to the input layer of network units 
that is propagated through each upper layer until an output is 
generated. This estimated output is then compared to the desired 
output, and an error is computed for each output unit. These errors are 
then transferred backward from the output layer to each unit in the 
intermediate layer that contributes directly to the output. Each unit in 
the intermediate layer receives only a portion of the total error signal, 
based roughly on the relative contribution the unit made to the 
original output. This process repeats layer-by-layer until each node in 
the network has received an error that represents its relative 
contribution to the total error. Based on the error received, connection 
weights are then updated by each unit to cause the network to 
converge toward a state that allows all the training patterns to be 
encoded (Freeman and Skapura, 1991). This research applied general-
ized delta rule (GDR) to learn the algorithm for the neural network.  
 
Binomial Logit Model (BNL). Probability estimates from the binary 
logistic regression function can be used to assign the explanatory 
variables to either of the two categories (accept/reject) of CGA 
decision model. Statistical significance of prediction ability of BNL 
CGA decision model for cars and other vehicles (buses, trucks and 
vans), is tested by assessing different criteria such as sensitivity, log 
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likelihood statistic, pseudo R2 (Cox & Snell, and Nagelkerke), and 
chi-square goodness of fit.  
 
Behavior Analysis of Different Types of Turning Vehicles 
 
Critical Gap Acceptance 
Cumulative Distribution Function (CDF) of gap acceptance by right-
turning vehicles is best fitted to lognormal distribution function with 
!= 0.50246 (continuous shape) and ! = 2.7471 (continuous scale) 
parameters (Equation 1). CGA by all vehicles is 17.56 sec with 
standard deviation 8.46 sec and coefficient of variance (COV) 0.482. 
K-S test, A-D test and Chi-square test reject the null hypothesis that 
there is a distance between the empirical and theoretical (normal) 
CDF.  
 
! ! = ! !"!!!

!
, where ! is the Laplace Integral   (1) 

 
The CDF of gap acceptance by different right-turning vehicles (cars 
and other vehicles) fits to different distribution functions. Like the 
distribution function for all right-turning vehicles, CDF of gap 
acceptance by right-turning car is best fitted to lognormal distribution 
function with ! = 0.51623 (continuous shape) and !  = 2.7593 
(continuous scale) parameters (Equation 1). However, CDF of gap 
acceptance by other right-turning vehicles is best fitted to log-gamma 
distribution function α = 39.36 (continuous shape), β = 0.06868 
(continuous scale) parameters (Equation 2). The CGA by right-
turning car and other vehicles is 17.865 sec and 16.364 sec respec-
tively. CGA was 1.5 sec higher for right-turning cars comparing to 
that for other right-turning vehicles. Increment of CGA by cars may 
be resulted from some factors. Although other vehicles start turning 
maneuver from longer distance to conflict point (turning maneuver 
was 10.83 m for cars and 17.52 m for other vehicles), higher speed of 
other vehicles (car speeds 1.96 m/sec and other vehicle speed 2.73 
m/sec) reduced the CGA duration comparing to that of cars. At the 
conflict zone, in 90% cases other vehicles are moving, while in 79% 
cases cars are moving. These reveal that other vehicles are taking 
more risk to complete the turning maneuver. Moreover, the 
pedestrians are also taking less risk to cross the road in front of other 
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vehicles (pedestrian speeds, interfering car and other vehicles, are 
2.03 m/sec and 1.83 m/sec respectively).  

 
! ! =

!!" ! /! !

! !
 (2) 

 
The K-S, A-D, and Chi-square statistics justify the fitness of 
lognormal and log-gamma cumulative distribution function of gap 
acceptance by right-turning car and other vehicles respectively.  
 
CDF of gap acceptance, by all left-turning vehicles, best fits to 
Weibull distribution function with α = 1.8865 (continuous shape), β = 
16.108 (continuous scale) and != 0.30685 (continuous location) 
parameters (Equation 3). CDF of gap acceptance by left-turning car 
best fits to Burr distribution function with k = 9.4307 (continuous 
shape), α = 1.9914 (continuous shape), β = 46.906 (continuous scale) 
and != 0.22807 (continuous location) parameters (Equation 4). CDF 
of gap acceptance by other left-turning vehicles best fits to Rayleigh 
distribution function with != 13.156 (continuous scale) parameters 
(Equation 5).  
  
! ! = 1 − exp − !!!

!

!
  (3) 

! ! = 1 − 1 + !!!
!

! !!
  (4) 

! ! = 1 − exp − !
!

!
!

!
  (5)  

 
K-S, A-D, and Chi-square statistics justify the fitness of Weibull 
cumulative distribution function of gap acceptance by all left-turning 
vehicles. K-S, A-D, and Chi-square statistics of Burr distribution 
function for gap acceptance by left-turning car rejected the null 
hypothesis that distribution of data differ from normal distribution. K-
S, and A-D statistics of Rayleigh distribution function of gap 
acceptance by other left-turning vehicles justify the acceptance of null 
hypothesis, however, Chi-square statistic rejects the null hypothesis 
that distribution of data differ from normal distribution. 
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The CGA for all left-turning vehicles is 14.57 sec with standard 
deviation 7.96 sec and coefficient of variance 0.55. CGA for left-
turning car and other vehicles is 14.252 sec and 16.488 sec 
respectively. CGA is 2.24 sec higher for other left-turning vehicles 
comparing to that of left-turning cars. This may be resulted from 
longer distance from conflict point (turning maneuver was 9.44 m for 
cars and 14.15 m for other vehicles), and higher acceptance of risk by 
bicycles (bicycle speed was 1.23 m/sec and 1.9 m/sec interfering with 
cars and other vehicles respectively) and pedestrians (pedestrian 
speed was 1.97 m/sec and 1.73 m/sec interfering with cars and other 
vehicles respectively) to pass ahead of the other left-turning vehicles. 
Other left-turning vehicles are more accommodating to bicycles and 
pedestrians on the conflict zone comparing to cars as other vehicles 
provide the right-of-way to more distanced bicycles (1.90 m for cars 
and 3.84 m for other vehicles) to pass ahead of them.  
 
The comparative statistics of CGA by different types of left- and 
right-turning vehicles reveal that CGAs of right-turning vehicles are 
higher than those of left-turning vehicles (20.52% for all vehicles and 
25.35% for cars). However, CGA of other vehicles remains almost 
same in case of both left- and right-turning maneuver.  
 
Factors Contributing to Turning Decision Making Process 
Back-Propagation Neural Networks (BPN). A total of 392 gap accep-
tance data were collected for right-turning vehicles, of which 50% 
(68% for cars and 59.7% for other vehicles), 31.4% (20.3% for cars 
and 20.9% for other vehicles) and 18.6% (11.7% for cars and 19.4% 
for other vehicles) gap acceptance data are assigned to training, 
testing and holdout respectively. Training data are used to train the 
neural network, while testing data are used to identify errors during 
training in order to prevent overtraining. The holdout data are used to 
assess the final neural network; the error for the holdout data gives a 
true estimate of the predictive ability of the model because the 
holdout data are not used to build the model (IBM, 2010). A total of 
64.1%, 26.3% and 9.6% of 605 road users’ interference data of the 
left-turning vehicles are assigned to training, testing and holdout. 
Vehicle’s CGA model will not predict the accurate estimation without 
predicting CGA decision model for all categories of vehicles. This 
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research calculates the CGA decision model for cars and other 
vehicles (buses, vans and trucks) by BPN. Multilayer Perception 
(MLP) network is applied to model vehicle’s turning decision in 
order to minimize the error in predicting default.  
 
BPN model estimates the importance of the selected attributes to the 
CGA decision by left- and right-turning vehicles. CGA decision 
model for all right-turning vehicles are mainly determined by vehicle 
speed (20.09%), number of vehicles passed (16.13%), vehicle moving 
at the conflict zone (12.98%), and vehicle distance from conflict point 
(11.02%). It reveals that CGA decision by right-turning vehicles is 
mainly dominated by vehicle attributes, although pedestrian’s speed 
(1.99 m/sec) is almost equal to vehicle speed (2.09 m/sec), and in 
56% and 46% cases pedestrians are crossing the intersection as a 
group and at rush respectively. Right-turning vehicles are taking risk 
because in 54% of cases vehicles are in queue, for 37% vehicles are 
at signal tail, and negligible existence and number of bicyclists at the 
conflict zone. CGA decisions by left-turning vehicles are determined 
by pedestrian speed (14.8%), bicycle distance from the conflict point 
(13.9%), number of vehicle passed (11%), number of bicycles passed 
during the interference (9.8%), and bicycle speed (8.5%). Therefore, 
CGA decision by left-turning vehicles is mainly structured by bicycle 
attributes. However, contribution of input variables to CGA decision 
model prediction is different for different types of vehicles.  
 

In the case of CGA decision by right-turning cars, vehicle speed 
(21.42%), vehicle moving at the conflict zone (14.68%), vehicle 
distance from conflict point (10.12%) number of vehicles passed 
(8.33%), and pedestrian speed (7.83%) are the determining attributes. 
Similar to right-turning decision making process by all vehicles, CGA 
decision model for car is predominately structured by vehicle 
attributes with exception of pedestrian speed. On the other hand, 
CGA decision models for left-turning cars are explained by 
pedestrian speed (9%), existence of bicycle at conflict zone during 
left-turning maneuver of car (7.5%), bicycles as group (11%), number 
of vehicles passed (11.5%), and bicycle speed (11.2%).  
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Significant inconsistency is observed in the importance of input 
variables for CGA decision model for other vehicles. For example, 
number of vehicles passed (25.78%), vehicle in queue (17.64%), 
existence of traffic jam (14.33%), vehicle speed (11.96%), and 
vehicle turning from turning lane (8.87%) are the dominant 
contributors of CGA decision model for other right-turning vehicles; 
while bicycle distance from conflict point (21.5%), bicyclists as 
group (10.3%), number of vehicles passed (15%), vehicle moving at 
conflict zone (8.8%), and vehicle turning from turning lane (7.3%) 
are the most important attributes of decision model for the other left-
turning vehicles.  
 
The estimation of BPN CGA decision model has significant differ-
ence between values implied by estimators and the true values of the 
outputs being estimated especially for training data. Testing data, 
used to track errors during training in order to prevent overtraining, 
also contain noteworthy expected value of squared error loss. Error 
for holdout data explains less accurate predictive ability of the 
constructed BPN MLP network. Moreover, relative error of CGA, a 
ratio of the sum-of-squares error for CGA to the sum-of-squares error 
for ‘null model’ (in which mean value is used as the predicted value), 
explains significant amount of errors in modeling CGA decision. 
However, the average overall relative error of model and relative 
error of dependent variables are fairly constant across the training, 
testing, holdout data, which give some confidence that the model is 
not over-trained and that the error in future cases scored by the neural 
network would be closed to the error. Uncertainty of BPN CGA 
decision model and irregular attitude of some attributes in defining 
the CGA decision model persuade this study to validate the CGA 
decision model for vehicles by applying binomial logit model (BNL).  
 
Binomial Logit Model (BNL). The sensitivity of BNL CGA model 
depends on how well the model predicts the correct categories of 
CGA decision-making. BNL CGA models accurately classify 80% 
(75% gap acceptance and 85.6% gap rejection) and 62% (71.7% gap 
acceptance and 50.8% gap rejection) cases of CGA by cars; and 
100% (100% gap acceptance and 100% gap rejection) and 86% 
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(87.8% gap acceptance and 84.4% gap rejection) cases of CGA by 
other vehicles for left- and right-turning maneuver, respectively.  
 
Log likelihood statistic, similar to residual sum of squares in multiple 
regression, is estimated for determining whether convergence to 
stable estimates have been attained for CGA decision model for both 
cars and other vehicles. A small value of log likelihood, for example, 
287.141 (at 20th iteration) and 659.371 (at 4th iteration) for CGA 
model of cars; 39.936 (at 20th iteration) and 60.991 (9th iteration) for 
CGA model of other vehicles justifies the fitness of BNL CGA 
models for both right- and left-turning maneuvers, respectively.  
 
Cox & Snell, and Nagelkerke pseudo R2, indicators of the amount of 
variation in the gap acceptance decision explained by the model 
(from a minimum value of 0 to a maximum value of approximately 
1), are estimated to evaluate the goodness-of-fit of logistic models 
and proportion of CGA decisions explained by BNL CGA models. 
Cox & Snell pseudo R2 compares the log likelihood for the logistic 
model with the log likelihood for the baseline model (without 
explanatory variables). However, Cox & Snell pseudo R2 has a 
maximum value that is not 1. For example, if the prediction of 
logistic model is perfect, Cox & Snell pseudo R2 will be less than 1. 
Nagelkerke pseudo R2, analogues to the coefficient of determination 
R in multiple regressions, is also estimated extending the range of 
possible pseudo R2 values to 1. Cox & Snell and Nagelkerke pseudo 
R2 values of BNL CGA models of other vehicles suggest that between 
74% and 100% of the variability of CGA decision are explained by 
the explanatory variables for the right-turning vehicles, while 
between 49.1% and 65.5% variance of CGA decision are explained 
by the explanatory variables for the left-turning vehicles. BNL CGA 
models of car suggest that between 39.3% and 52.5% of the 
variability of CGA decision are explained by the explanatory 
variables for the right-turning vehicles, while between 10.3% and 
13.8% variance of CGA decision are explained by the explanatory 
variables for the left-turning vehicle. However, BNL CGA models of 
left-turning cars cannot satisfactorily explain the variance of CGA 
decisions.  
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BNL CGA model of right-turning cars identifies vehicle distance 
from conflict point, vehicle speed, pedestrian in group, pedestrian at 
rush, vehicle moving at the conflict zone, number of vehicles passed 
and existence of traffic jam as the significant contributors to the 
prediction ability of the CGA decision based on the 5% significance 
level. A unit increase of vehicle speed, pedestrian in rush, and vehicle 
moving at the conflict zone would result in a decrease of 0.879, 
1.326, and 0.97 unit, respectively, in the logit probability of gap 
acceptance by right-turning car. The logit probability of gap 
acceptance by right-turning cars will be multiplied by 0.074, 1.107, 
1.472, and 0.982 for a unit increase of vehicle’s distance from 
conflict point, pedestrian in group, number of vehicle passed and 
existence of traffic jam respectively. For the left-turning cars, vehicle 
in queue, bicycle existence at the conflict zone, bicycle distance from 
conflict point, bicycle speed, group pedestrians, rush pedestrians, and 
number of vehicles passed are the significant contributors (5% 
significance level) to the prediction ability to CGA decision model. A 
unit increase of bicycle existence at conflict zone, bicycle distance 
from conflict point, pedestrians at rush, and number of vehicles 
passed multiplies the likelihood of CGA decision by 7.23, 1.14, 2.19, 
and 1.64 respectively. On the other hand, unit increase of vehicle in 
queue, bicycle speed, and group pedestrian decreases the likelihood 
of CGA decision by 0.41, 0.55, and 0.54 respectively.  
 
BNL CGA model of other right-turning vehicles identifies vehicle in 
queue, vehicle speed, rush pedestrian, existence of traffic jam, vehicle 
at signal tail, and vehicles turning from turning lane as the significant 
contributors to the prediction ability of CGA decision model. On the 
other hand, vehicle distance from conflict point, vehicle in queue, 
existence of bicycle at conflict zone, group bicyclists, and bicycle 
distance from conflict point are the significant contributors to the 
prediction ability of CGA decision model for the other left-turning 
vehicles.  
 
This study also estimates Wald test, which is distributed approxi-
mately as chi-square on one degree of freedom, to determine the 
contribution or importance of each attribute. Vehicle speed (22.88%), 
Number of vehicles passed (19.97%), vehicle distance from conflict 
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point (9.55%), pedestrian at rush (8.92%), pedestrian in group 
(7.47%) and vehicle moving at the conflict zone (6.67%) are the 
predominant contributors to CGA decision by right-turning cars. The 
predominant contributors of CGA decision for left-turning cars are 
mainly bicycle (existence of bicycle at conflict zone 6.68%, bicycle 
speed 6.27%, and bicycle distance from conflict point 4.59%) and 
pedestrian (pedestrians at rush 12.71% and pedestrians in group 
5.77%) attributes along with reasonable contribution by vehicle in 
queue (9.75%) and number of vehicle passed (4.36%). Long time 
waiting at queue makes the driver impatient to reject the critical gap. 
Otherwise, we can summarize that bicycle and pedestrian attributes 
are the determining factors of CGA decision by the left-turning cars. 
For the other right-turning vehicles, the paramount contributors of 
CGA decision are vehicle attributes (vehicle speed 7.51%, vehicle in 
queue 7.09%, vehicle in signal tail 6.19% and vehicle turning from 
turning lane 6.45%). However, bicycle attributes (bicycle distance 
from conflict point 8.71%, group bicycle 6.38%, and existence of 
bicycle at conflict point 4.49%) are the main decision making factors 
of CGA for other left-turning vehicles along with some influence of 
vehicle attributes (vehicle distance from conflict point 8.53%, and 
vehicle in queue 7.56%). Therefore, for all types of vehicles, CGA 
decision for left-turning vehicles is predominantly determined by the 
bicycle attributes followed by pedestrian attributes.  
 
Conclusion  
 
Turning vehicles, at a signalized intersection in a university campus, 
are frequently impeded by pedestrians and bicycles; therefore, 
vehicles’ turning decisions are very crucial to ensure traffic safety. 
Vehicles’ turning decisions are subject to road users’ characteristics 
and traffic conditions at the signalized intersection. The objectives of 
this study are to estimate CGA of different turning vehicles, and to 
determine the influence of road users’ attributes on vehicles’ turning 
decisions. This study considers the intersection of Boulevard de 
Maisonneuve Ouest and Rue Mackay in George Williams Campus of 
Concordia University (Montreal, Canada) as a case study. 
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Micro-simulation of turning vehicles’ decisions is conducted at two 
stages—estimation of CGA and determination of the contribution of 
road users’ attributes in the turning decision. Stochastic approaches 
are applied to estimate the CGA by different vehicles. CDF of gap 
acceptance by right-turning car is best fitted to lognormal distribution 
function with CGA of 17.865 sec. CDF of gap acceptance by other 
right-turning vehicles is fitted to log-gamma distribution function 
with CGA of 16.364 sec. CDF of gap acceptance by left-turning cars 
and other vehicles is fitted to Burr and Rayleigh distribution function 
with CGA of 14.252 sec and 16.488 sec respectively. CGAs of right-
turning vehicles are higher than those of left-turning vehicles 
(20.52% for all vehicles and 25.35% for cars). 
 
Backpropagation learning algorithm of Artificial Neural Network 
(BPN) and Binomial Logit Model (BNL) are applied to identify the 
influence of explanatory attributes on the vehicle’s turning decision. 
BPN prediction model identifies vehicle speed (21.42%), vehicle 
moving at the conflict zone (14.68%), vehicle distance from conflict 
point (10.12%) number of vehicles passed (8.33%), and pedestrian 
speed (7.83%) as the determining attributes of CGA decision by the 
right-turning cars. However, pedestrian speed (9%), existence of 
bicycle at conflict zone (7.5%), bicycle as group (11%), number of 
vehicles passed (11.5%), and bicycle speed (11.2%) are the main 
decision-making factors for the left-turning cars. BPN prediction 
model also identifies number of vehicles passed (25.78%), vehicles in 
queue (17.64%), existence of traffic jam (14.33%), vehicle speed 
(11.96%), and vehicle turning from turning lane (8.87%) as the 
dominant contributors of CGA decision model for other right-turning 
vehicles; while bicycle distance from conflict point (21.5%), bicycle 
as group (10.3%), number of vehicles passed (15%), vehicle moving 
at conflict zone (8.8%), and vehicles turning from turning lane (7.3%) 
are the most important attributes of decision model for other left-
turning vehicles.  
 
BNL CGA model identifies vehicle speed (22.88%), number of 
vehicles passed (19.97%), vehicle distance from conflict point 
(9.55%), pedestrian at rush (8.92%), pedestrian in group (7.47%) and 
vehicle moving at the conflict zone (6.67%) as the predominant 
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contributors to the CGA decision by right-turning cars; while bicycle 
(19.31%) and pedestrian (21.33%) attributes are the predominant 
attributes of BNL CGA decision model for left-turning cars. For the 
other right-turning vehicles, the paramount contributors of CGA 
decision are vehicle attributes (vehicle speed 7.51%, vehicle in queue 
7.09%, vehicle in signal tail 6.19% and vehicle turning from turning 
lane 6.45%). However, bicycle attributes (bicycle distance from 
conflict point 8.71%, group bicycle 6.38%, and existence of bicycle 
at conflict point 4.49%) are the main decision-making factors of CGA 
for other left-turning vehicles along with some influence of vehicle 
attributes (vehicle distance from conflict point 8.53%, and vehicle in 
queue 7.56%). 
 
Both BPN and BNL CGA prediction model identifies that CGA 
decisions by left-turning vehicles are predominantly determined by 
the bicycle attributes for all types of vehicles, while vehicles’ 
attributes are the major contributors of CGA decision by the right-
turning vehicles.  
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