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Introduction 
 
In essence, logistic companies and HGV travelers choose their 
journey paths after considering a variety of factors including route 
boundaries, network traffic condition, travel costs and time. There is a 
set of approaches utilized to efficiently integrate fleets, operation 
centers and infrastructure midway nodes, in order to minimize 
system-wide costs while satisfying service level requirements. The 
approach introduced here is in the framework of Advanced Traveler 
Information Systems (ATIS) appointing; first, time factor (interrup-
tion time), secondly, fuel economy and last but not least, finding the 
correlation between interruption time and fuel economy.  
 
In terms of travel time, possible interruption points during pre-
haulage, post-haulage and main haulage will affect estimated time of 
arrival (ETA). This information can be obtained by several means: 
travelers’ and operators’ own experience, radio broadcasts, Internet 
websites and variable message systems (VMS). Also it might be 
accessible for the operators or drivers as well, as it can be 
incorporated into pre-trip and/or on-trip data. The accuracy of ETA 
can be increased by accumulating the estimated interruption wait 
times. However, like traffic data, stochastic approaches are required 
to be deployed over the historical data.  
 
The cost factor encapsulates a variety of aspects such as fuel con-
sumption, vehicle operation costs, labor costs, overhead costs and 
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environmental impacts. The simplest methods for cost reduction are 
finding the shortest path and best speed adjustment for fuel economy. 
There are a great number of algorithms to compute the shortest path 
based on mathematical approaches (Ittai et al., 2011), which is 
beyond the scope of this study. For fuel consumption, usually the 
travelers adjust their speed range from minimum to maximum 
allowed in a link during their journey. Speed-cautious driving 
behaviors and eco-driving will result not only in lower risk of 
accident, fewer traffic violations, less vehicle wear and fewer break-
downs, but also significantly reduce both fuel consumption and 
emissions. In order to minimize fuel consumption and hence 
emissions, it is necessary to provide drivers with advice and feedback 
while driving. The results of Shiaw-Shyan et al. (2010) on eco-
driving studies in Southern California present how deployment of on-
board eco-driving devices affects driving behavior, and the resulting 
fuel economy. Their study examines instantaneous fuel economy 
feedbacks provided to the driver under real-world driving conditions. 
 
Finally, data fusion in ITS architecture is a true asset and added value 
for existing stand-alone information systems. The physical and logi-
cal interoperability between systems has been employed to improve 
operation of systems and by optimization methods, more robust and 
reliable information is provided to transportation problems.  
 
Problem Statement and Objective 
 
Basically, the FLS considers tradeoffs between a variety of factors 
including travel time and fuel economy. The supply chain competi-
tive market trend, with fast and timely based services, requires rapid 
responsive and reactive transportation system with real-time accurate 
information to avoid extra costs.  
 
If the fleet’s travel plans take into account both fuel economy and 
travel time, but ignore variation in the services at terminals and 
interruption nodes, then it might lead to many long delays, and hence 
the FLS won’t function at its optimum level. Lack of communication 
between these interruption points and FLS is a major cause of these 
irregularities. Variation in the infrastructure service load may cause 
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uninformed utilization and decrease the optimum performance. 
Avoiding variation in demand is a critical objective in process and 
operation management (Slack, 2009). For instance, Figure 1 shows a 
scenario in which the vehicle i is heading toward interruption point n 
with average speed ! and distance l. The driving behavior will be 
eco-drive as far as it is ahead of its schedule. This will lead to saving 
fuel up to the arrival to point n. At interruption point n there will be a 
queue waiting for vehicle i at time !!

!!
. If the interruption point i 

collects expected duration of time arrival based on duration of HGVs 
headways with implementation of ITS telematics (inductive loops, 
radar, DSRC1, etc) then it was possible to guide the driver in advance 
to adjust the speed more accurately (Mannering, 2008). After 
interruption point n the driver may speed up to recover lost time and 
reach point n+1. Again, if the driver is not aware about the expected 
queue at n+1 then it lead again to another increase in cost by 
consuming more gas and arriving at the time of higher service load at 
n+1.  

 
Figure 1 

 
Methodology 
 
Two data sets are required in this application: estimation of cost 
factors and estimation of wait time at interruption points. 

 
Cost factors 
As mentioned earlier, fuel cost, vehicle operation costs, labor costs, 
overhead charges and environmental costs are some elements in cost 
analysis. Fuel economy considers all of these factors with excessive 
attention to emission factors. According to the EU Commissioner for 
climate action studies, HGV represent about a quarter of EU road 
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transport CO2 emissions and some 6% of the total EU emissions with 
a rising trend mainly due to increasing road freight traffic (European 
Commission, 2011). The data collected from a location-based 
services (LBS) mobile app over 10,000 journeys uploaded to a web 
portal over nine months show the tradeoff between the speeds that the 
participants drove, the fuel they used and their total journey time. 
Summary of results published by developer presents maximum speed 
reduction to 100 km per hour could reduce fuel consumption by 9%, 
but add less than two minutes to the average hourly journey time 
(DriveGain, 2012).  
 
Each vehicle reaches its optimal fuel economy at a different speed (or 
range of speeds) depending on engine design, vehicle age, weight, 
make, driver behavior, road topography, fuel properties, resistive 
forces on the vehicle, temperature, humidity level, and many other 
factors. In general, gas mileage decreases rapidly at speeds above 80 
km/h.2 Driving behavior in accelerating and decelerating between 
posted speed limits and roadway grades have a significant impact on 
vehicle fuel consumption and CO2 emission rates. Maintaining a 
desired speed by adjusting the vehicle throttle and brake level can 
improve the result. Implementation of advanced driver assistance 
systems (ADAS) can result in excessive fuel usage by attempting to 
maintain a desired speed on roadway segments. Added to conven-
tional cruise controls, adaptive cruise controls systems are available 
in the market bringing more enhancements. Research in 2011 at 
Virginia Polytechnic Institute led to the development of an eco-cruise 
control system that is adaptive and responsive to road topography 
information. The idea was based on an old principle used by 
experienced truck drivers: “travel faster in downgrades and slow 
down along upgrades”. The result of their test performed at Interstate 
81 with vehicles equipped with onboard unit (OBU) and eco-cruise 
control system shows that, on average, the eco-cruise control system 
can save 10.33 percent in fuel consumption and correspondingly CO2 
emissions for different vehicle types (Kyoungho et al., 2011). Adding 
to topographic profiles, gear-shifting information was considered by 
researchers from Linkőping University (Fröberg et al., 2008). With a 
macroscopic approach the system is trying to minimize the total 
aggregation of costs factors as presented in Equation 1 where ! is fuel 
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consumption rate for vehicle i at time t which can be extracted from 
popular fuel consumption models (Mannering, 2008) in the mechan-
ical engineering Equation 2. ! is aggregation of overhead costs 
including vehicle operation costs, labor costs and other overheads for 
fleet company j. and finally ! is environment impedance.  
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In Equation 2, ! is the fuel consumption factor, which varies with the 
engine make and condition, k is the engine friction, ! is the engine 
speed in revolutions per second at time t, d is engine displacement 
and P is total power used by the vehicle driveline at time t for vehicle 
i. The variables affecting P are: total resistance force (aerodynamic, 
rolling, and grade resistance forces for vehicle i), vehicle mass, 
vehicle acceleration at time t, the vehicle speed at time t; gear ratio at 
time t, and driveline efficiency of vehicle i.  
 
Interruption points wait time estimation 
Fleets cannot avoid interruption points in longer journeys such as 
stops at customs control or POE on an interstate or international trip. 
These stations are interrupting trips in order to provide required and 
necessary services. Restricted capacity at stations means limitations 
in serving vehicles during a time period. Having an insight about the 
real-time and estimated service level at these points is as important as 
having traffic data for journey planners. These stations include: 
terminals, border crossing, point of entries, custom inspections, police 
inspections, loading and offloading stations, weigh scales, rest 
stations, tolling, refueling stations and so on. At these stations 
vehicles’ engines burn fuel either if working idle or “stop and go” 
without earning any mileage. Estimated fuel consumption of an idling 
engine is 0.6 liters per hour per liter of engine displacement and this 
figure rises in “stop and go” patterns. Implementations of new 
technologies hand in hand with systems interoperability have reduced 
these impacts but it’s not vanished yet. Fleet management and 
telematics, real-time planning and operations are reducing wait times 
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at terminals and loading and offloading stations. Different techniques 
such as weight in motion, open road tolling (ORT), electronic toll 
collection systems, HGV parking information at motorway service 
and rest areas, and finally systems like SENTRI3 and IBCC4 can 
automate the operation and hence reduce wait times. Even with these 
systems, there are still many interruption points with information 
unavailable for FLS. Difficult terminal and operator cooperation, lack 
of intersystem equipment, old systems, infrastructure and rolling 
stock, uneven utilization of terminals, underdeveloped information 
and communication infrastructure are the main reasons for the failure.  
 
Using ITS for reducing delays and increasing the reliability of 
crossing and wait times at POEs was among several objectives 
mentioned in the proposed freight Act of 2010 (U.S. Senate, 2010). 
 
The operators and drivers usually use estimation of wait time based 
on historical data available and real-time information presented to 
them. The Niagara border crossing between Ontario and New York 
with two major POEs (Peace Bridge and Queenston-Lewiston 
Bridge) is an example with available historical data to FLS. 
 
In addition to historical traffic data, Alice Kam et al. proposed 
application of artificial neural networks (ANN) to predict travel times 
for real-time control of a VMS motorist information system at the 
Canadian-U.S. border crossing areas. The ANN traffic flow pre-
diction models comprise one functional module in the motorist delay 
awareness systems for border crossings concept. The travel times 
used for Advanced Traffic Management and Information Systems 
may be based on historical (Weissmann et al., 2007), current, or 
predicted traffic conditions. Historical traffic data are unlikely to 
provide an appropriate indication of evolving, day-specific traffic 
conditions. Alice Kam et al. have indicated that the use of historical 
data as the basis for real-time control is significantly inferior to the 
use of current or predictive information (Alice Kam et al., 2004). 
 
By implementation of detection and sensor systems such as DSRC, 
radar and inductive loops in the pathway toward POEs it’s possible to 
aggregate the headways between HGVs and traffic information. This 
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data can be fed into the simulation model and, combined with filtered 
historical data, will produce a reliable estimation of wait time for 
vehicles already in the network. The sensor locations have to be just 
before or after major bifurcation points and interchanges along the 
highway and adjacent network (Figure 2). Moreover, the distances 
between sensors generally needed to be shorter near the POE. Alice 
Kam et al. propose installation of 19 inductive loops in order to 
gather information about the vehicle types, flow, speed and queuing 
data along the route to each bridge. These have been used as input 
parameters in the neural networks design where flow and speed could 
be readily collected by loop detectors on the roadways. The queuing 
data could be obtained indirectly from the number of vehicles in each 
individual queue link at POE. Also it is important to consider the 
queue mixture whether the trucks queue is separated from passenger 
vehicles queue or there mixed queue of traffic.  
 
Since the service rate at stations varies due to different factors such as 
security level at border control or inspection capacities (number of 
open channels) on one hand, and on the other hand the demand is not 
constant because arrival of HGVs to the station changes over time, 
therefore stochastic analysis is required for the queue and conse-
quently wait time. Usually we have multilane queues at stations. For 
the queue, exponentially distributed time intervals and departure 
(derived from assumption of Poisson distributed arrivals and 
departure) will be used, with N number of departure channels. This 
queue model is known as M/M/N. The simulation software used is 
based on the same traffic flow distribution. First in first out (FIFO) 
queuing discipline is applicable for interruption points.  
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Figure 2 

!!to !!are showing the sensor units. Information from these sensors 
is provided both to the traffic center to compute level of service and 
the station n in order to calculate the expected service rate. These 
sensors are parts of distributed network in the ITS architecture. The 
processing unit will provide information based on each section to the 
driver (to OBU) or operator (processing unit) and raw data can be 
used to extract estimation of wait time. The expected wait time for 
driver i can be compute based on average time spent in the system ! 
in unit time per vehicle as follows: 

! = !+!
!

  (3) 

The estimation waits time for vehicle i, !! can be computed based on 
Equation 4: 

!!!
!!
!!

+ !!.!
!!.!

!
!!!    ∗ !   (4) 

!!  is the queue at current time, !! is the average departure rate in 
vehicles per hour at current time. This will be the estimation of wait 
time based on queue left if there is no more HGV between vehicle i 
and station n.  λ Shows the average arrival rate in vehicle per unit time 
according to each sensor unit ! at time  ! = !!−!!

! . 
 
The matrix produced during travel time will be updated at future 
times t; this will include possible HGVs overtaking vehicle i (which 
will pass the next sensor unit). 
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The transfer function for vehicle i to drive at maximum posted speed 
!!"#  or follow optimum speed orders according to eco-drive 
!!"#  will be: 
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In this model, service level has highest priority in respect to echo-
drive other criteria. With calibration it is possible to include station 
service level into echo-drive variables rather than overriding it. 
 
Simulation 
 
Two routes have been selected for this simulation. Both connect 
Montreal central as the starting point to Boston city center as the 
destination. Route I (Figure 3) with 587 km length via I-89S and I-91 
passing through Highgate Springs on QC-133. Route II (Figure 4) 
with 623 km leaves Montréal on A-15 and, via I87S and I90-E, 
reaches Boston. There is a trip interruption for customs and border 
check on both routes (Canada–U.S. point of entry) called St-
Armand/Philipsburg and St-Bernard-de-Lacolle, accordingly. 
 
The simulation in this study has been conducted by VISSIM micro-
simulation software. The traffic condition of the highway has been 
selected at three different times of the week with average free flow, 
stable flow and unstable flow. Two separate service levels and 
expected wait-time dataset were available at each point of entry 
dedicated to commercial vehicles and passenger cars. These data are 
available to drivers and operators online or via other means such as 
“wireless version” at Canada Border Services Agency website.5 The 
update interval is 30 minutes. These data have been used as the basis 
of current average wait times in the simulation environment, 
considering 90 seconds standard deviation.6 In order to have the 
estimation of wait times in the network, sensor units (inductive loops) 
were placed just before or after major bifurcation points and 



Foomani et al. 10 

interchanges along the journey path. The queue length at POE was 
monitored with sensor units actuating speed changes for HGV 
travelers and taking into account HGV traffic ahead.  
 

 
Figure 3 

 
Figure 4 

 
Figure 5 

Figure 5 is a snapshot of simulation at POE during unstable traffic 
flow, showing HGV waiting for customs clearance to leave the 
station. Fuel consumption is based on databases of different types of 
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vehicles (passenger and HGV) that could be imported into VISSIM 
simulation environment. 
 
The summary of results for routes I and II (Tables 1 and 2) presents a 
minor effect on average travel time and, consequently, fuel consump-
tion reduction. The point is that the fuel consumption reduction is not 
just due to travel time reduction but also the speed pattern of vehicles. 
Under normal conditions, for instance, there are cases where a driver 
drives more aggressively with more wait time at POE. On the other 
hand, in the same scenario under the optimized model simulation, the 
driver could drive normally considering some time to be saved at 
POE caused by giving enough time to queue for its reduction. 
Although the travel times for both drivers are almost the same, less 
fuel has been consumed by the second driver. 
 
This is not an “always true” statement without having sufficient 
information and, as mentioned earlier, the traffic ahead of the driver 
will change the input level of the future queue. Even though under the 
optimized simulation environment we have more shifts between max 
and min posted speed, which is against eco-drive principles, in 
general the result was better. It is very important to combine other 
variables improving eco-drive as mentioned earlier. 
 

Table 1 

route	  I	  
Traffic	  Condition	  

Free	  flow	   Stable	  flow	   Unstable	  flow	  

Speed	   TT*	   ρ*	   TT*	   ρ*	   TT*	   ρ*	  

Normal	   6h10'	   209.64L	   6h55'	   236.27L	   8h15'	   284.27L	  

Optimum	   6h08'	   204.23L	   6h42'	   223.5L	   8h07'	   278.3L	  

Difference	   2'	   5.41L	   13'	   12.77L	   8'	   5.97L	  

%	   0.5%	   2.7%	   3.2%	   5.7%	   1.5%	   2.2%	  
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Table 2 

route	  II	  
Traffic	  Condition	  

Free	  flow	   Stable	  flow	   Unstable	  flow	  

Speed	   TT*	   ρ*	   TT*	   ρ*	   TT*	   ρ*	  

Normal	   6h17'	   226.54	   6h40'	   245.04L	   7h55'	   324.04L	  

Optimum	   6h14'	   221.13L	   6h29'	   231.73L	   7h49'	   317.81L	  

Difference	   2.5'	   5.41L	   11'	   13.31L	   6.5'	   6.23L	  

%	   0.70%	   2.65%	   2.83%	   5.80%	   1.48%	   1.96%	  

*The average for travel time “tt” and fuel consumption “ρ” for all HGVs in 
the simulation and in 10 times simulation runs under each scenario. 
 
Conclusion 
 
In fleet logistics systems one of the key strategies for improving 
vehicle fuel efficiency is obtaining more miles from each liter or 
gallon of fuel. Vehicle idle times and trip interruptions are double 
losses because extra fuel is burned without earning mileage and there 
is extra travel time for trip. This is in contradiction to supply chain 
responsive transportation requirements designated for just-in-time 
and other time-based applications. According to fuel economy and 
eco-driving, it is better to drive at a steady pace than to jack-rabbit 
between high and low posted speeds. Conventional cruise controls 
help drivers follow more constant patterns in their course. Integrating 
factors such as road topography, gear to drive, resistive forces on the 
vehicle, temperature and humidity level into cruise control will 
enhance efficiency in fuel economy. Adapting vehicle speed with 
real-time information received from expected queue length at time of 
arrival to interruption points is another added value that enhances 
eco-drive with incentives for speeding up whenever queue trend is 
positive, or slowing down if queue trend is negative. 
 
As a multi-objective approach this will reduce fuel consumption and 
travel time for FLS and consequently reduce CO2 emissions and 
smooth load distribution and temporal service at stations.  
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In this study, results for average fuel consumption, CO2 emissions 
and average travel time for two journey plans from Montreal to 
Boston have been simulated under dynamic traffic conditions and 
triggering HGV speed based on estimated queue at POE. Further 
studies for calibrating the method, data fusion technics and real world 
test need to be conducted. 
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Endnotes 
                                                             
1 Dedicated short range communication 
2 Fuel economy www.eia.gov April 2013  
3 Secure Electronic Network for Travelers Rapid Inspection 
4 International Border Crossing Clearance 
5 http://www.cbsa-asfc.gc.ca/bwt-taf/menu-eng.html - Accessed March 07, 2013 
6 "No delay" means less than 10 minutes. We considered no delay as 10 minutes delay 
according to CBSA instruction in order to neglect negative variables. 


