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Introduction 
 
Traditional transportation network modeling studies typically assume 
that travelers are perfectly rational, i.e., they always choose the paths 
with the shortest (perceived or real) travel costs. In reality, however, 
users are boundedly rational in the sense that they may choose non-
shortest paths if the travel time saving offered by switching to the 
shortest path is not big enough. The concept of bounded rationality 
(BR) has been extensively studied in the economic and psychology 
literature, and it has been shown that BR is important in many 
contexts (see, e.g., Conlisk, 1996). 
 
In transportation field, there are only a small number of studies on 
BR. Mahmassani and Chang (1987) studied the existence, 
uniqueness, and stability properties of boundedly rational user 
equilibrium (BRUE) in the standard single-link bottleneck network. 
Many simulation and experimental studies have incorporated 
travelers’ boundedly rational behaviors (e.g., Jayakrishnan et al., 
1994; Hu and Mahamssani, 1997; Mahamssani and Liu, 1999; 
Mahamssani 2000). The simulation results of Nakayama et al. (2001) 
imply a need to examine the validity of the perfect rationality 
assumption in traffic equilibrium analysis. Lou et al. (2010) is the 
first to systematically examine the mathematical properties of BRUE 
in a network traffic assignment context. Guo and Liu (2011) 
developed a boundedly rational day-to-day dynamic model to explain 
irreversible network change. Zhang (2012) discussed and compared 
four equilibrium traffic assignment models including BRUE and 
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pointed out that the general BR theory must be further developed and 
refined for traffic assignment modeling. 
 
One important property of BRUE is that the BRUE equilibrium 
solution is not unique, i.e., BRUE always has a set of solutions 
instead of a unique one (e.g., Lou et al., 2010). This nonuniqueness 
property can make traditional network planning and design strategies 
ineffective. For example, when marginal cost congestion pricing is 
implemented with the aim of achieving the system optimal (SO) flow 
pattern, the worst-case BRUE network performance can be even 
worse than that under the no toll case. Generally speaking, because of 
the nonuniqueness of BRUE, from a static equilibrium perspective, if 
we admit/accept that travelers are boundedly rational, then there is no 
guarantee of attainability of any target flow pattern by implementing 
tolls or other network design strategies. Lou et al. (2010) tackles this 
problem by introducing robust congestion pricing which considers 
worst-case and best-case solutions under BRUE. 
 
In this paper, we solve the nonuniqueness problem of BRUE from a 
disequilibrium flow evolution perspective. Based on two assumptions 
on travelers' route choice behaviors which are consistent with BRUE, 
we design toll sequence operations (TS-operations) which can induce 
the network flow pattern to evolve towards the traditional Wardrop 
user equilibrium (UE) flow pattern. In particular, under homogeneous 
BR, iteratively implementing our TS-operations can make the 
network flow pattern converge to UE. This essentially solves the 
nonuniqueness problem of BRUE and re-establishes the effectiveness 
of link tolls in realizing any target link flow pattern. That is, given a 
target link flow pattern (e.g., the SO flow), we can always implement 
a link toll scheme under which the target link flow is a tolled UE flow 
(Bai et al. 2006; Guo and Yang, 2009), and then we can iteratively 
implement our TS-operations to realize this tolled UE flow. 
 
Preliminaries on Homogenous Bounded Rationality 
 
Let a transportation network be a fully-connected directed graph 
denoted as , consisting of a set of nodes  and a set of 
links . Let  be the set of OD pairs,  be the fixed travel 
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demand between OD pair ,  be the set of paths connecting 
OD pair , and  be the set of all paths of the 
network. Paths are assumed to be acyclic. Let  be the path flow on 
path , and  be the link flow on link . The following 
relationships and constraints hold 

,  (1) 

,  (2) 

,  (3) 

where  is equal to 1 if path  uses link  and 0 otherwise. 
Denote demand, path flow and link flow vectors as , , and , 
respectively, then the feasible set of link flows is given by 

, and the feasible set 

of path flows is given by . 
 
In this paper, we consider separable link travel time function , 

, which means that the travel time of one link depends on the 
flow on the link only. It is assumed that  is an increasing 
function of  for all . Let  be the travel time along path 

, which is the sum of travel times on all links that constitute the 
path. We thus have 

,  (4) 

 
We recall now the BRUE definition (e.g., Guo and Liu, 2011). 
 
Definition 1. A path flow pattern  is said to be a boundedly 
rational user equilibrium (BRUE) flow pattern if it holds that 

, if ,  ,  (5) 
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where  is the shortest path cost between OD pair under 
flow , and  is the BR threshold of travelers between OD pair 

.  
 
In the above definition, condition (5) simply states that, under a 
BRUE flow pattern, the travel cost of any used path can be higher 
than the shortest path, but within a threshold. Observe that, when the 
BR threshold is zero, i.e.,  for all , condition (5) 
reduces to  for every used path , and thus the BRUE 
definition becomes the classic UE definition. Also note that, the UE 
flow pattern always satisfies condition (5) (due to  on every 
used path ), and thus there is always one BRUE solution. 
 
Unlike UE, the BRUE equilibrium solution is not unique, i.e., BRUE 
always has a set of solutions instead of a unique one (Lou et al., 
2010). This means that, from a static equilibrium perspective, there is 
no guarantee of attainability of any target flow pattern (first-best or 
second-best) by implementing tolls or other network design 
strategies. In the following we will design TS-operations that can 
induce the network flow pattern to evolve towards the traditional UE 
pattern, which essentially solves the nonuniqueness problem of 
BRUE and re-establishes the effectiveness of link tolls in realizing 
any target link flow pattern. 
 
Because our scheme is built upon network flow evolution, we need to 
make assumptions regarding how travelers change their routes when 
the network flow pattern is at some disequilibrium state (non-BRUE 
state). One most natural assumption in this regard would be one 
implied by the definition of BRUE, that a traveler would change to a 
shorter route only if the route is more than certain threshold shorter 
than her current route. 
 
To formally state the above assumption and technically deal with 
flow evolution, let  and  be the path flow and link flow 

vectors, respectively, on day , and let  and  be the derivatives of 
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path flow and link flow, respectively, with respect to time . 
Furthermore, let  be the net flow swapping rate from path  to 

path , and define  between any two paths  and . 
That is, to say that travelers are switching from path  to path  at a 

positive rate , is equivalent to say that travelers are switch-

ing from path  to path  at a negative rate . 

Simply speaking,  and  describes the same flow swapping 
process between path  and path . Then we have 

 (6) 

which means that the flow changing rate of a path is equal to the sum 
of all the inflow rates towards the path, or equivalently, is equal to the 
negative of the sum of all the outflow rates from the path. We use 

 to denote that paths  and  connects the same OD pair, then 

 can hold only if . 
 
Because we are going to use tolls to induce flow evolution, we 
introduce toll related notations here. We only consider link toll in this 
paper. Let  be the toll charged on link , and let  be the link 
toll vector. Let  be the generalized cost of path , which is 
the sum of travel times and tolls on all links that constitute the path. 
We have 

,  (7) 

 
Now we are ready to formally state our first assumption regarding 
flow evolution dynamics. 
 
Assumption 1. A traveler may switch to a new route only if the new 
route is more than certain threshold shorter than her current route. 
Mathematically, it can hold  only if ,  and 

,  , . 
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Note that Assumption 1 essentially assumes homogeneous users with 
the same level of BR threshold across the network. This 
homogeneous BR assumption will be used in this paper, and thus we 
will rewrite  to be .  
 
With Assumption 1, if we let  in eqn. (5) of the BRUE 
Definition 1 and consider the no toll case , then it is clear that at 
BRUE it holds  for all  and , and therefore it holds 

, i.e., a BRUE flow pattern is a stationary flow pattern under 
Assumption 1. Note that Assumption 1 alone does not exclude other 
flow patterns to be stationary, i.e., BRUE is sufficient yet not 
necessary for a stationary flow. To make BRUE a necessary and 
sufficient condition for stationary flow, we further introduce the 
following assumption. 
 
Assumption 2. Some travelers on a path must switch to other paths if 
there exists a path that is more than certain threshold shorter than 
their current path. Mathematically, for any path , if  and 

there exists a path  such that , then  must 
hold for at least one path . 
 
Comparing Assumptions 1 and 2, we can see that Assumption 1 spe-
cifies a condition under which a flow can change, while Assumption 
2 gives a condition under which a flow must change. Combining 
Assumptions 1 and 2, and consider the no toll case , we can see 
that a flow is a stationary flow if and only if it is a BRUE flow. 
 
To discuss our TS-operations later, here we first define an -toll. 
 
Definition 2. A toll  is said to be an -toll if under toll  it holds 

,  (8) 

 
Comparing (8) and (7), if we only consider non-negative tolls, then 
(8) simply means that the total toll along any path should be not 
higher than . For example, if we only levy a toll  on link 
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 and let the tolls on all other links be 0, then obviously we 
obtain an -toll. As we will see later, this simplest kind of -toll 
actually plays an important role in our main task of realizing UE flow 
pattern. 
 
Effective -toll-sequence operation to realize the UE flow 
 
In the following, we are going to show that, if a flow pattern is not 
UE (say, a BRUE flow that is not UE), then levy an -toll can 
induce the flow to move towards UE, and by doing so iteratively, the 
flow pattern can be finally led to UE. 
 
To do so, let us revisit the UE objective function. Because in this 
paper we look at flow evolution from a path flow swapping 
perspective, we write the UE objective function in terms of path flow 
variables 

 (9) 

It is well known that the UE path flow pattern, or equivalently the 
path flow pattern  that minimizes objective function (9), is 
typically not unique. We let  denote the set of UE path flow 
patterns.  
 
It is easy to derive that the gradient vector of objective function (9) is 
just the path cost vector, i.e., , where  is the path cost 
vector. Then taking time derivative of (9) gives  

 (10) 

Substituting eqn. (6) into eqn. (10) gives  

 

which readily gives 

 (11) 



Guo 8 

By simple index rearranging, we have 
 

Thus, by rewriting the last term of the right-hand side of eqn. (11), we 
have  

 (12) 

 
Now we are ready to give the following important lemma. 
 
Lemma 1. With Assumption 1, if an -toll is implemented, it holds 

 

where "=" holds if and only if  for all paths  and . 
 
Proof: From (12), it suffices to prove that, for any pair of paths 

, . Without loss of generality, consider a 

pair of paths  such that , then from Assumption 1 we 
have 

 (13) 

Because the toll is an -toll, from eqn. (8) of Definition 2 we have 
 (14) 

 (15) 

Combining (13) and (14) gives , and then from (15) we have 
. This completes the proof. 

 
The above proof follows a simple line: eqn. (12) guarantees that if 
flow can only change from a higher cost path (cost not including toll) 
to a lower cost one, then the UE objective function will reduce if flow 
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changes; Assumption 1 guarantees that, under an -toll, flow can 
only change from a higher cost path (cost not including toll) to a 
lower cost one. The key part here is that, under an -toll, the total 
toll along any path is not higher than , which, together with 
Assumption 1, guarantees that no one will be forced to swap to a 
longer path by tolls. 
 
From Lemma 1, if an -toll is implemented and the flow pattern 
changes under the toll, then the UE objective function (9) reduces. 
We formally state this as Lemma 2. 
 
Lemma 2. With Assumption 1, if an -toll is implemented on an 
initial flow  for a time period of  and the resulting flow is 

, then it holds , where "=" holds if and only if . 
 
From Lemma 2, if we can design a sequence of -tolls, under which 
the flow pattern will keep changing until UE is achieved, then such a 
toll sequence can be implemented to guide flow evolution towards the 
UE flow pattern. 
 
To this end, let us formally introduce the concept of a TS-operation. 
Let  be a sequence of n tolls and  

be a sequence of n positive time periods, we define  as a 
TS-operation, where toll  is implemented for a time period of  
and followed by toll  being implemented for a time period of , 

. Note that it can hold , which represents a no-
toll period of . For a given TS-operation , let  
denote the flow obtained by implementing  on an initial flow 

. Assuming the flow evolution dynamic satisfies the technical 
uniqueness conditions for differential systems, then  could be 
viewed as a continuous function of , i.e.,  .  
 
Definition 3. A TS-operation  is said to be an -TS-
operation if the toll sequence  consists of -tolls only. 
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Furthermore, an -TS-operation  is said to be effective if 
 holds for any . 

 
We will discuss and give examples of effective -TS-operations 
later. Here we first give the following important result regarding an 
effective -TS-operation. 
 
Lemma 3. With Assumption 1, if  is an effective -TS-

operation, then it holds  for any . 
 
Observe that Lemma 3 is a direct result of Lemma 2. Lemma 3 
simply states that implementing an effective -TS-operation on a 
non-UE flow pattern will guide the flow towards UE. 
 
Define  for all integers , i.e.,  is 
the flow obtained by iteratively implementing  for  times 
starting from initial flow . From Lemma 3, applying Zangwill's 
convergence theorem (Zangwill 1969), we have the following general 
theorem of realizing the UE flow pattern. 
 
Theorem 1. With Assumption 1, if there exists an effective -TS-
operation , then, starting from any initial flow , 

either  holds for a finite integer , or it holds 

, , as . 
 
Theorem 1 states that implementing an effective -TS-operation 
iteratively will make the flow pattern converge to UE, or can realize a 
flow that is arbitrarily close to the UE flow pattern. 
 
Now the question becomes whether there exists an effective -TS-
operation. We shall start by giving the following result, which 
ensures the existence of an effective -TS-operation. 
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Theorem 2. Let , ,...,  be an ordering of the elements of , 

where  is the cardinality of , i.e., the number of links of the 

network. Let  be a toll sequence where  is such 

that  and all other links have 0 toll, i.e., 

, . Let 
 
be a 

sequence of time periods where , . Then, with 

Assumptions 1 and 2, the TS-operation  is an effective -
TS-operation. 
 
Theorem 2 states that implementing a toll equal to  on one link at a 
time and doing so over all links of the network is an effective -TS-
operation, which, from Theorem 1, can guide the flow towards the 
UE flow pattern if implemented iteratively. It should be mentioned 
that Theorem 2 here is just to show the existence of an effective -
TS-operation, while the particular TS-operation presented in Theorem 
2 is not necessarily the best. In particular, an effective -TS-
operation does not necessarily require toll implementation on every 
link. In the following, we will show that a subset of links could be 
enough for constructing an effective -TS-operation. 
  
Definition 4. A link set  is said to be effective if for any 

, for at least one pair of paths ,  and 

 
(such a pair of paths must exist, otherwise ), there 

exists a link  such that  and . 
 
Observe that there always exists an effective link set because  itself 
is effective. For an effective link set, we have the following result. 
 
Theorem 3. Consider an effective link set , let , ,...,  

be an ordering of the elements of , where  is the cardinality of 
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. Let  be a toll sequence where  is such that 

 and all other links have 0 toll, i.e., 

, . Let 
 
be a sequence of time periods 

where , . Then, with Assumptions 1 and 2, the TS-

operation  is an effective -TS-operation. 
 
Theorem 3 simply states that implementing a toll equal to  on one 
link at a time and doing so over all links of an effective link set is an 
effective -TS-operation.  
 
Strong cut-set to construct effective link set 
 
We are naturally interested in finding a minimal effective link set, 
which involves a minimum number of links when implementing an 
effective -TS-operation. In the following we shall show that, by 
examining the strong cut-sets of OD pairs, we can obtain effective 
link sets which involves fewer number of links.  

 
 

Figure 1. A small network to illustrate strong cut-set 
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Let  denote a strong cut-set of OD pair  such that for 
every path  there exists one and only one link  such 
that . Because we only consider simple paths without cycles, a 
strong cut-set always exists for an OD pair. For example, the set of all 
links starting from the origin node is a strong cut-set, and the set of all 
links ending at the destination node is also a strong cut-set. In the 
small network shown in Figure 1, node and link numbered as shown, 
if we consider OD pair from Node 1 to Node 9 (OD ), then 
Links 1 and 3 constitute a strong cut-set, and so do Links 10 and 12. 
other strong cut-sets of OD  in this small example, e.g., the set 
of Links 3, 4 and 5, the set of Links 9, 10 and 11, etc. 
 
A strong cut-set, in spite of comprising a relatively limited number of 
links, involves all paths, and thus is likely to be an effective link set. 
That is, sequentially implementing a toll equal to  on all links of a 
strong cut-set can impact all paths and thus could be an effective -
TS-operation. There are two exceptions we need to take care of. First, 
if a strong cut-set consists of one link only, then a toll on this link is 
equally added to every path and thus will not impact travelers' route 
choice. Second, for a strong cut-set that consists of two or more links, 
when all travelers choose the same link of the strong cut-set, we may 
have the same problem as the first exception. To handle the first 
exception, we need to consider strong cut-sets comprised of two or 
more links; to handle the second one, we define a balanced strong 
cut-set. 
 
Definition 5. A strong cut-set  of OD pair  is said to 
be balanced if , and, when there exists a link  such 
that  holds for every path , , there must exist a 
path  such that ,  for a path , . 
 
Definition 5 means that, for a balanced strong cut-set of OD pair 

, if all travelers between OD pair  use the same one 
link of , then there must exists one (unused) path that passes 
through another link of  with a path cost lower than one used 
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path. In other words, if a strong cut-set  is balanced, then there 
does not exist such a situation that all travelers use one link of , 
while all the (unused) paths passing through other links of  are 
longer than the used paths. For the small network shown in Figure 1, 
consider the strong cut-set of OD , Links 1 and 3. If Links 1 
and 3 constitutes a balanced strong cut-set, then, if all travelers use 
Link 1, then at least one unused path passing through Link 3 must be 
shorter than one used path.  
Balanced strong cut-sets have the following property. 
 
Theorem 4. Consider a link set , where  is a 
balanced strong cut-set of OD pair , then  is an effective 
link set. 
 
Theorem 4 basically gives a heuristic about finding an effective link 
set. That is, we find a balanced strong cut-set for every OD pair, then 
the union of these strong cut-sets is an effect link set. For the small 
network shown in Figure 1, consider there is only one OD pair  
and the strong cut-set comprised of Links 1 and 3 is balanced, then 
from Theorems 1, 3 and 4, implementing a toll equal to  on Links 1 
and 3 alternately and iteratively will guide the flow towards UE. 
 
Conclusions 
 
We end this paper by summarizing the findings. Theorem 1 states that 
iteratively implementing an effective -TS-operation will make the 
flow pattern converge to UE, and Theorem 2 states that an effective 

-TS-operation always exists. Theorems 3 and 4 highlight that an 
effective -TS-operation does not necessarily involves all links, and 
in particular, strong cut-sets of OD pairs can be used to construct 
effective link sets. These theorems together guarantee that the UE 
flow pattern can be realized under homogeneous BR, which 
essentially solves the nonuniqueness problem of BRUE and re-
establishes the effectiveness of link tolls in realizing any target link 
flow pattern. That is, given a target link flow pattern, we can always 
implement a link toll scheme under which the target link flow is a 
tolled UE flow (Bai et al. 2006; Guo and Yang, 2009), and then we 
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can iteratively implement an effective -TS-operation to realize this 
tolled UE flow.  
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