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Introduction 
 

Urban traffic congestion has become a significant and problematic 

symptom of city life.  The mismanagement of city road networks can 

lead to significant inefficiencies in terms of wasted time by 

commuters, as well as unnecessary pollution being emitted from 

vehicles idling in traffic.  In the US, the annual cost associated with 

traffic delays has been estimated to be $48 billion (Arnott, 1994).  

Any chance of reducing these delays has the potential to free-up huge 

quantities of capital for more productive uses.  As global populations 

continue to urbanize, and automobile use continues to rise in many 

nations, the importance of minimizing the social costs of commuting 

will only become more important. 

  

Urban traffic congestion has historically been viewed as having 

solutions in the realm of municipal zoning and regional development 

strategies.  Increasingly, in the modern literature, this problem is 

being analyzed in economic and mathematical terms.  This paper will 

explore the existing theories on traffic “games” and go on to suggest 

general applications for this set of theories.  Many results of routing 

theory are complex and counterintuitive.  A nuanced understanding of 

individual incentives and game theory is vital to designing traffic 

networks that can best serve the regional population. 

  

When traffic congestion is modeled as many commuters or “players” 

each trying to independently minimize their total travel time, the 

methods of game theory can be readily applied to find equilibriums in 
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the system.  When these equilibriums differ significantly from what 

would be considered a socially optimal outcome, there can be space 

for a central authority to increase the efficiency of the overall system 

by several possible means.  

  

A 1952 paper by John Glen Wardrop titled, “Some Theoretical 

Aspects of Road Traffic Research,” began introducing a theoretical 

framework to network routing games.  To this point traffic congestion 

problems were considered to be a fairly inescapable result of growing 

urban populations.  Wardrop considered that, “It is not always 

appreciated that in a severely practical subject such as traffic 

engineering there is need for theory” but that such theory is essential 

to “progress in any field.”  Wardrop’s paper has been widely credited 

with kick-starting a wide range of exploration into game theoretic 

approaches to modeling traffic patters. 

  

Wardrop’s paper was followed by a, now widely cited, paper by 

Charnes in 1957 which looked to bring together Wardrop’s basic 

principles of traffic networks with the field of game theory.  The 

major contribution of Charnes was proposing the additional 

assumption that all drivers in a network are acting selfishly to 

minimize their own costs, and that this may lead to suboptimal 

outcomes. The idea is that each driver is imparting an external cost 

onto all other drivers by adding congestion to the roadway, and 

slowing down overall flow. 

  

Modern research has gone much further in fully applying game 

theory to networks.  Most recently traffic planning theory has had a 

surprising synergy with the field of computer science.   Local 

computer networks, as well as peer-to-peer file transfer networks can 

suffer from the same problems as urban road networks as individual 

computers attempt to minimize the time it takes to transfer data 

without consideration of how their route choice might influence the 

efficiency of the overall system.  This theoretical equivalency, 

coupled with the development of computer modeling for regional 

traffic networks has spurred a rapid expansion of the theory of traffic 

network planning over the past decade (Awerbuch, 2005; 

Koutsoupias, Papadimitriou, 1999). 
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The actual instruments of government intervention that would be 

necessary to reach optimal traffic pattern outcomes have received 

much less attention than the mathematical theory.  This paper will go 

on to suggest how a system could –in practice– be optimized with 

road tolls and road closures by a central planning authority. 

 

Modeling An Unregulated Game 

 

The complexity of a traffic routing game can vary immensely with 

the details of the network being modeled; however, there is a 

framework of underlying game theoretic assumption that can be 

universally applied to this type of competitive game. The assumption 

that underpins much of the theory of network routing is that when 

players are free to make their own decisions they will pick the route 

that minimizes their personal travel times, irrespective of how their 

choice effects the system as a whole.  

  

Consider a group of drivers who must all travel from point A to point 

B, but have a choice of different possible routes.  The first situation is 

of an unregulated road system in which any driver is free to take any 

road they wish for free.  In this case the solution will be obvious.  A 

Nash Equilibrium will be reached when no driver can unilaterally 

change his or her route to reduce their own travel time; in short, the 

travel time of taking any possible route must be equal. Wardrop 

characterizes the solution as follows, “The journey times on all the 

routes actually used are equal, and less than those which would be 

experienced by a single vehicle on any unused road (1952).”  The 

player’s strategies are characterized by each player choosing the route 

that will minimize their personal expected travel time.  This is akin to 

check-out lineups at a grocery store.  An individual shopper will 

always pick the shortest line available to minimize their wait time, 

resulting in all lines being of approximately equal length.  It is 

important to recognize that although this state of affairs may be 

optimal from a personal perspective it is unlikely to be optimal from a 

social planning perspective. 

  

Understanding why this outcome is suboptimal involves invoking 

game theory.  Classical economics –within the boundaries articulated 
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by say Adam Smith in The Wealth of Nations (1776)– asserts that if 

each individual acts in their own self-interest that an efficient 

outcome will result due to the so-called “invisible hand” of the 

market.  This notion applies poorly to a market which involves 

externalities, public goods, and strategic interaction, such a market 

can be better described by game theory. 

Consider the following road network as an illustration:  

 

Figure 1: This hypothetical road network assumes that all drivers begin their trip in the 
“Suburb” and end their trip in the “City.” Travel times of either road are represented by 

equations which take into account the number of other cars (x) using that particular 

road. 

 

Suppose that 58,000 commuters must make the trip each morning 

from the “Suburb” to the “City” (figure 1).  All commuters are free to 

make the choice of whether to take Road A or Road B.  The travel 

time for both roads is a function of distance, road capacity, and the 

number of other cars on that road (x).  The system will reach a Nash 

Equilibrium when none of the 58,000 drivers can decrease their drive 

time by switching roads.  This system is solved in Appendix A.  The 

solution is found to be 54 minutes of travel time for every driver. 

 

Social Optimum 

 

The previous section examined the normal state of affairs for road 

networks; open access, where every driver is free to minimize costs 

without consideration for the other drivers in the system.  Youn et al. 

point out that, “[open access] does not mean that flows in 

transportation networks minimize the cost for all users as is 

sometimes assumed … the flows can in reality be far from optimal” 

(2008). This outcome may not be optimal in that it fails to minimize 

total drive time for society.  This section will demonstrate how the 
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system could become more efficient if a central planner were given 

the ability to pick driver’s routes for them. 

  

Consider the example given in the previous section (figure 1).  This 

simple system could instead be solved by minimizing with respect to 

the combined number of minutes traveled by all the commuters.  This 

calculation is executed in Appendix B.  The optimal solution is 

shown to be the situation in which 14,667 drivers use Road A and 

43,333 drivers use Road B, with an average drive time of 53 minutes 

26 seconds.  Notice that this is both unique from the Nash 

Equilibrium outcome as well as lowers the average driving time. 

 

The benefits that accrue due to this centralized planning can best be 

expressed in the amount of time saved by society.  The average driver 

saves 34 seconds per commute, and there are 58,000 commuters.  The 

cost savings is therefore (34 seconds • 58,000) 548 hours saved for 

every commute. 

  

Arnott analyzed real traffic networks in American metropolises to 

make similar rough estimates of the total savings that could be 

obtained due to a centrally planned traffic network (1994).  Arnott 

goes on to invoke studies which have shown that drivers have an 

average willingness to pay of about $13 per hour (figure updated for 

inflation) to avoid an additional hour of driving.  Applied to this 

paper’s specific example this gives $7,100 in benefits for every 

commute.  Arnott suggests a figure of 6 billion hours in potential time 

savings per year across the US, or about 78 billion USD in annual 

savings.  Calculating the potential benefits from instituting centrally 

planned traffic routing is within the realm of normal cost-benefit 

analysis.  Additionally, the potential for societal cost savings is 

seemingly quite large, this should act as motivation for the pursuit of 

such policies.  The question of how government can effectively 

control traffic flows is a separate question that will be addressed later 

in this paper. 
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Braess’s Paradox 

 

One of the more fascinating and counterintuitive results of traffic 

routing analysis is known as Braess’s Paradox.  By analyzing 

theoretical routing situations Dietrich Braess found that situations 

exist in which adding an additional road to a network can make every 

individual driver worse off (Braess, 1968).  This is a stronger 

statement than saying a new road could lower the efficiency of the 

overall system.   

  

To see how this could come about we turn to an example:  

 

 

Figure 2: This road network is divided into 5 segments, each with an individual cost 
function.  Some functions are flat times (A, Z, and D) and some are functions of the 

number of other cars on the road (B and C). 

 

Suppose 500 drivers must travel from a suburb into the city each 

morning for work.  The road network is modeled in figure 2, with the 

travel times written beside each road.  Two of the roads (A and D) do 

not suffer from traffic congestion; perhaps they have a sufficiently 

large number of lanes so they never reach capacity.  Roads B and C 

however, do suffer from traffic congestion and therefore have their 

travel times written as a function of ‘x,’ which will stand for the 

number of commuters who take this particular road on a given 

morning.  For the time being ignore the connector road Z. 

  

If drivers are left to choose whichever road they please, and we 

assume that each driver will take the route that will minimize his or 

her travel time, then the system will reach a Nash Equilibrium when 

the travel times of both routes are equal.  This system is solved in 

Appendix C, and it is shown that every driver will take 18 minutes to 

reach the city, in a Nash Equilibrium. 
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Now suppose the local traffic authority opens up road Z to traffic.  

The diagram is not to scale so imagine connector road Z is very short 

and takes a negligible amount of time to drive.  Intuitively it would 

seem that adding additional capacity to the system should allow 

commuters to reorganize to lower their travel times; however, it can 

be shown that the addition of this roadway actually makes every 

single driver worse off than before.   

  

Allowing each driver to cost minimize again, and reach a Nash 

Equilibrium will yield a new solution.  The solution is more intuitive 

now.  Each driver faces two distinct choices: take either road A or B 

for the first leg of the journey, then take either road C or D for the 

second leg.  Notice that the solution is simple, and that even if every 

driver takes road B it is still faster than road A and, likewise, road C 

is always faster than road D.  As a result, all 500 drivers will take the 

route B-Z-C, and this will take 19 minutes.  This is a new Nash 

Equilibrium because if any driver switches from road B to A, they 

will add time to their trip, and likewise if they chose to switch from 

road C to D.  No driver has an incentive to switch and the system has 

therefore settled into a Nash Equilibrium.  This demonstrates that 

adding Road Z is harmful to the efficiency of the system. 

  

After Braess suggested the existence of this situation there have been 

many studies attempting to uncover whether this “paradox” is a 

practical problem for traffic planners. Potentially, the complications 

of a real life traffic network make such a situation unlikely to occur, 

in which case Braess’s Paradox would be more of an intellectual 

curiosity (Arnott, 1994; Rapoport, 2005; Youn, 2008). 

  

Rapoport et al. ran laboratory experiments attempting to test the 

descriptive power of Braess’s Paradox.  Subjects chose routes in 

subsequent rounds of a game, unaware of the true cost functions of 

each route.  The true makeup of the game was similar to what has 

been modeled in figure 2 of this paper.  When there are two separate 

routes (“upper” or “lower”) Rapoport found the expected equilibrium 

occurring, in which the travel times for the two roads are equal.  

When a new road was added to invoke Braess’s Paradox (akin to road 

Z in this paper) subjects shifted to the new Nash Equilibrium where 
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all subjects take the same route, and the cost to each player increases.  

These results are consistent with Braess’s Paradox, and the result 

approached this equilibrium within only a few rounds of play.   

  

Following this experiment Rapoport introduced a more complex road 

system, which required players to make several choices between 

roads.  This new network theoretically still had the characteristics for 

Braess’s Paradox to emerge.  What he found was that the subjects did 

shift gradually towards the new (higher cost) equilibrium, but even 

after 80 rounds of play the new equilibrium was never fully realized.  

The participants were not playing rational best responses.  This 

suggests that if the road network is quite complicated (as most real 

world networks are) then drivers may be unable to fully realize their 

best responses.  This means there are now stochastic and irrational 

elements to play.  Without the assumption of rationality the 

application of game theory in general may be suspect.  The extent to 

which the Braess’s Paradox prediction was violated was not 

quantified in Rapoport’s paper,  but it seems that a strict application 

of game theory can still offer a good approximation for most traffic 

situations, and offer very accurate solutions in the case of simple 

networks. 

 

General Network Analysis and The Price of Anarchy 

 

In analyzing possible efficiency gains in road networks it is useful to 

consider how much more efficiently the network could run if we were 

to compel the drivers to take up the socially optimal solution.  The 

disparity that exists between the socially optimal outcome of a road 

system and the Nash Equilibrium outcome has been defined in the 

literature as the Price of Anarchy.  This notion was first articulated by 

Koutsoupias and Papadimitriou in 1999, although they did not call it 

“Price of Anarchy.” Awerbuch et al. introduce this theory in a paper, 

and describes it by stating:  

“The degradation of network performance caused by the lack of a 

centralized authority can be measured using the worst-case 

coordination ratio (price of anarchy) … which is the ratio between the 

worst possible Nash Equilibrium and the social optimum.”    

(Awerbuch et al., 2005) 
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An example of an explicit calculation of the Price of Anarchy can be 

found in Appendix D. Interestingly Awerbuch is not addressing 

issues of urban traffic flow in this paper but is discussing routing of 

computer networks transferring data.  Much of the modern literature 

regarding the Price of Anarchy in routing games is centered on 

attempting to optimize routing of computer data.  Awerbuch, as well 

as others, have explicitly pointed out that this problem can be 

modeled identically to urban traffic flow.  This is because –much like 

drivers– computers in a network search for the quickest route, 

irrespective of the potential externalities this places on the network as 

a whole.  As a result of these similarities these two, seemingly 

disparate fields of study, make use of much of the same literature.   

  

The Price of Anarchy is an interesting statistic when applied to traffic 

planning because it can be used to make a case for or against 

intervention by government into the incentives of drivers.  If the Price 

of Anarchy is very high, market intervention could potentially allow 

for large efficiency gains.  If rival government interventions are being 

considered for several different areas then intervention in the section 

which possesses the largest Price of Anarchy should be instituted 

with more urgency. 

 

Optimal Tax Policy 

 

Now that it is clear there can be a difference between the socially 

optimal network outcome and the outcome that occurs naturally in 

equilibrium, the question becomes what could be done by a social 

planner to move society towards this social optimum.  As is often the 

case in economics, using tax policy to alter incentives is a viable 

solution.  This paper will look at two alternative tax schemes to 

achieving a socially optimal outcome. 

  

The first type of tax considered is tolling all roads using marginal cost 

pricing, consistent with the type of taxes first articulated by Pigou 

(1920).  This type of taxation has received substantial attention in the 

literature (Smith, 1979; Cole et al., 2006).  It has the potential to fully 

account for all congestion externalities that a driver confers onto 

other drivers. 
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Turning back to our basic commuter problem (Figure 1), the marginal 

external cost conferred onto each other driver is equal to 1/1000 when 

taking Road A and 1/2000 when taking Road B.  The total external 

cost of an individual’s commute is then equal to this marginal cost 

multiplied by the number of other drivers taking this road.  The idea 

of marginal cost pricing is to charge every driver this rate depending 

on which road they have taken.  This optimal tax scheme is solved in 

Appendix E and optimal rates are determined to be 14.7 minutes for 

Road A and 21.7 minutes for Road B.  The optimal rates are 

expressed in terms of minutes and would clearly have to be converted 

into a monetary value.  This could be done by multiplying the optimal 

toll minutes by a figure equal to the willingness to pay of commuters 

to avoid an additional minute of commuting time.  The actual 

derivation of this WTP figure may be fairly nuanced in practical 

applications because the WTP of commuters is likely to vary 

substantially between individual commuters, meaning a simple 

average of WTP across the population may not provide an optimal 

outcome.  This is not an insurmountable problem as it mainly a 

question of data constraints and the tools of cost-benefit analysis may 

be well suited to solving this problem. 

  

This method of taxation does; however, suffer from a number of other 

practical problems.  First of all, the tax scheme may suffer because, 

“the principle of marginal cost pricing is single-minded in its pursuit 

of a minimum-latency flow, and ignores the disutility to network 

users due to (possibly very large) taxes” (Cole, 2005).  The 

imposition of very large tolls on a large number of roads may 

significantly alter the incentives for people to drive in general.  The 

model assumes a perfectly inelastic demand for driving and therefore 

does not take into account that large tolls could lower the total 

number of commuters and thereby create an end result that is not 

consistent with the goals of network cost minimization. 

  

Second, the application of this tax system to a complex network may 

suffer because it would require administering tolls on every road in 

the network.  Utilizing wireless transponders rather than physical toll 

booths may alleviate this problem somewhat, but the amount of 

necessary infrastructure is very high, and expecting commuters to 
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rationally cost minimize in a system this complex is probably 

unrealistic. 

  

This paper will suggest an alternative approach to achieving a 

socially optimal outcome that overcomes some of these problems.  If 

the network can be modeled quite simply it is possible to have a few 

targeted tolls which will create a social optimum.  Considering once 

again the example of figure 1, if only Road B is tolled with a cost 

equivalent to 7 minutes (if WTP to avoid an hour of traffic is found to 

be $13 then toll would be $1.52) then the Nash Equilibrium will 

occur when there are 14,667 cars on Road A and 43,333 cars on Road 

B; which is the social optimum (Proven in Appendix F).  This 

strategy only requires tolling one road rather than both.  Furthermore, 

this toll is significantly smaller than either of the tolls in the marginal 

cost pricing scheme so it would be less distortionary to the overall 

incentives. 

  

The approach of targeted tolls is less eloquent than marginal cost 

pricing because it does not fully internalize the externalities of a 

drivers actions.  When there is perfectly inelastic demand for driving 

(as has been assumed in the models) then the second method will 

allow for the same outcome to be achieved with less tolling.  Moving 

to a more complex model with variable traffic volume would impart 

an added benefit to marginal cost pricing because not only would the 

distribution of drivers be socially optimal but the total number of 

commuters who chose to drive would also be socially optimal.  This 

would only be the case if the marginal cost pricing perfectly 

represented the true social cost of driving. 

 

Efficiency Gains Through Road Closures 

 

A method to increase the efficiency of a traffic network, which is 

unique from a tax scheme, could be to block off some connections in 

the network.  This again seems like an unintuitive solution: shouldn’t 

having fewer roads create more congestion in the system?  But as was 

explored in the case of Braess’s Paradox, situations can exist in which 

adding an additional road can make everyone worse off.  Conversely 

it must be true that removing a road from a network has the potential 



Tyndall 12 

to make everyone better off.  Furthermore, if the question is how to 

improve overall efficiency of the system we need not make every 

commuter better off, only make the summation of all travel times 

lower.  This second situation may be possible even if a Braess’s 

Paradox situation does not exist. 

  

Cole et al. points out that “a sufficiently large edge tax effectively 

removes the edge from the network… Taxes are thus at least as 

powerful as edge removals” (2006).  Although taxes offer greater 

possibilities for fine tuning the system it may be more practical for a 

traffic planner to simply block off a certain road.  This is not as 

draconian a policy as it may seem as most cities already institute 

some form of “local traffic only” policies on some roads.  These 

policies are usually instituted with the goal of calming traffic in a 

certain neighbourhood but there is no reason why they couldn’t be 

used for general efficiency gains in the network at large. 

 

There have been many papers written on how best to design traffic 

networks to maximize “robustness” (Stairs, 1968; Jenelius, 2007; 

Jenelius, 2011).  Robustness in this case refers to the networks ability 

to remain highly functional if any one edge in the network is closed 

due to unforeseen circumstances (ie. traffic accident).  Despite the 

large amount of literature on this topic there is surprisingly little on 

possible efficiency gains due to intentional closure of a road.  The 

incorrect intuition that more roads are better is once again interfering 

with analysis.  In robustness analysis there is a recognition that how 

vital a particular road is to a network can take on a range of values 

(some roads are very important, some have zero contribution); 

however, this range is incorrectly bounded by zero.  It may be that 

roads exist in a network which have a negative impact on overall 

efficiency, as has been proven in the extreme case of Braess’s 

Paradox. 

  

Youn et al. successfully identified roads in New York, Boston, and 

London which could improve network efficiency if they were closed 

to traffic (2008).  Further study in this area could allow traffic 

planners to better use this potentially powerful tool, which seems to 

be underutilized in practice, and under-analyzed in the literature. 
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Conclusion 

 

In Wardrop’s first theoretical examination of traffic planning he 

considered the field to be a “severely practical subject” that had seen 

little use for theory (1952).  Since this time there has been an 

explosion of research into the game theoretic underpinnings of traffic 

network planning.  It turns out that the topic is extremely nuanced, 

complex, and often counterintuitive.  There is certainly much room 

for continued research in this field. 

 

Case studies of traffic networks in major cities have shown that there 

is great potential for efficiency gains by instituting centrally 

controlled traffic routing (Gonzalez et al., 2007; Youn et al., 2008).  

These studies demonstrate that tools such as road tolls, and road 

closures are underused in most metropolitan regions. 

 

The advancement of GPS and wireless data technology coupled with 

the expanded use of tolling transponders presents opportunities for 

better network optimization.  Ran et al. look at the possibility of 

continuous, on-the-fly network optimization (1993).  This could take 

the form of a web application which takes into account congestion 

equations on all routes of the system, as well as current traffic 

conditions, and network obstructions.  The program could then utilize 

variable tolls on roads which fluctuate to continuously optimize the 

entire system.  Commuters could be made aware of the tolls through 

wireless access to the application. 

 

Many regions already use variable tolling; for example, having lower 

tolls on off peak hours.  It is not inconceivable that a region could 

institute tolls which truly capture marginal external costs of each trip, 

and are able to optimize the system much more efficiently than 

current practices allow. 

 

Sophisticated economic cost minimization could then be coupled with 

advances in technology which allow for automated toll collection.  

Hong Kong pioneered a road tolling system in which cars are 

equipped with a sensor which emits a personalized signal which is 

recorded by tolling sensors along the road.  Drivers are then sent a 
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bill at the end of the month for their driving tolls.  Arnott and Small 

review the Hong Kong model and claims it to be, “a complete success 

from an engineering and economic standpoint” (1994).  At this time 

the road tolling in Hong Kong has been discontinued due to public 

opposition. 

 

Singapore has been able to learn from the successes of the Hong 

Kong network and implement its own version.  The wireless tolling 

network in Singapore has also been considered successful in reaching 

its goals, and is looking to update the system by relying on GPS 

tracking rather than road side tolling sensors. 

 

The field of game theory provides fairly clear solutions regarding 

how road network efficiency could be improved.  A sophisticated 

understanding of this theory is essential to the design of efficient 

regional traffic networks.  The ability to use new technology to 

implement network optimization will be the next step in creating road 

networks which can provide the most efficient transportation possible 

to expanding urban populations.  

 
Appendix A: 

 

Drive times for Road A and Road B must be equal. 

Drive time for A = 44 + (xA/1000) Drive time for B = 30 + (xB/2000) 

∴ 44 + (xA/1000) = 30 + (xB/2000) 
xA = -14000 + xB/2   

Total drivers = 58,000    so 58,000 = xA + xB       xB = 58,000 - xA 

xA = -14000 + (58,000 - xA)/2 
1.5xA = 15,000  xA = 10,000 cars xB = 48,000 cars 

Drive time for A = 54 Minutes = Drive time for B = 54 Minutes 

 

Appendix B: 

 

Total Drive Time = (Drivers on Road A)•(Drive time on A) + (Drivers on B)•(Drive 
time on B) 

  S.T. XA + XB = 58000 

TDT = XA(44 + XA/1000) + XB(30 + XB/2000) 
TDT = 44XA + XA

2/1000 + 30(58000 - XA) + (58000 - XA)2/2000) 

TDT’ = 44 + XA
2/1000 + 30(58000 - XA) + 1682000 - 58XA + XA

2/2000 

TDT’ = 3XA/1000 - 44 = 0 
XA* = 14,667 cars XB* = 43,333 cars 

TC = 3,099,333.3 Minutes       Average Drive Time = 53.44 = 53 Minutes 26 Seconds 
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Appendix C: 

 
Total cost of taking the upper route is:  12 + 4 + xU/100 = 16 + xU/100  

Total cost of taking the lower route is: 5 + xL/100 + 10 = 15 + xL/100 

We know there are 500 commuters so the restriction of the system is: xU + xL = 500 
It is also known that the travel costs of the two routes must be equal in a Nash 

Equilibrium. 

Solving yields: 
 16 + xU/100 = 15 + xL/100 

 xL = xU + 100     

 Restriction: xU = 500 - xL 
 xL = 500 - xL + 100 

 xL = 300  and  xU = 200 

Travel time for upper route = 18 minutes Travel time for lower route = 18 minutes 

 

Appendix D: 

 

Suppose a group of commuters must travel from point A to point B each morning.  

Also suppose there are several possible routes from A to B. 

Without central planning the commuters take a combined 500 hours to get from point 
A to B. 

Suppose that a planner can organize the commuters by assigning them specific routes 

from A to B and that this solution minimizes the combined driving time.  Combined 
commuting time is now reduced to 400 hours. 

Price of Anarchy = 500/400 = 1.25 

 
Appendix E: 

 

Marginal Cost Pricing 
 

(Private Cost of Taking Road A) + (Social Cost of Taking Road A) = (Private Cost of 

Taking Road B) + (Social Cost of Taking Road B) 
 

44 + (XA/1000) + XA(1/1000) = 30 + (XB/2000) + XB(1/2000) 

14 + (XA/500) = (XB/1000)    58,000 = xA + xB 

XA = 14,667 XB = 43,333 

 

Social Cost of A = Toll on A = XA(1/1000) = 14.7 minutes 
Social Cost of B = Toll on B = XB(1/2000) = 21.7 minutes 

 

Appendix F: 

 

Drive time A = Drive time B + Toll on B 

44 + (XA/1000) = 30 + (XB/2000) + T   
At Optimal XA = 14,667  XB = 43,333 

14 + 14.667 = 21.667 + T 

T = 7 Minutes 
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